ترغب بنشر مسار تعليمي؟ اضغط هنا

New Constraints on Lorentz Invariance Violation from Combined Linear and Circular Optical Polarimetry of Extragalactic Sources

72   0   0.0 ( 0 )
 نشر من قبل Roman Gerasimov
 تاريخ النشر 2021
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Expanding on our prior efforts to search for Lorentz invariance violation (LIV) using the linear optical polarimetry of extragalactic objects, we propose a new method that combines linear and circular polarization measurements. While existing work has focused on the tendency of LIV to reduce the linear polarization degree, this new method additionally takes into account the coupling between photon helicities induced by some models. This coupling can generate circular polarization as light propagates, even if there is no circular polarization at the source. Combining significant detections of linear polarization of light from extragalactic objects with the absence of the detection of circular polarization in most measurements results in significantly tighter constraints regarding LIV. The analysis was carried out in the framework of the Standard-Model Extension (SME), an effective field theory framework to describe the low-energy effects of an underlying fundamental quantum gravity theory. We evaluate the performance of our method by deriving constraints on the mass dimension $d=4$ CPT-even SME coefficients from a small set of archival circular and linear optical polarimetry constraints and compare them to similar constraints derived in previous works with far larger sample sizes and based on linear polarimetry only. The new method yielded constraints that are an order of magnitude tighter even for our modest sample size of 21 objects. Based on the demonstrated gain in constraining power from scarce circular data, we advocate for the need for future extragalactic circular polarization surveys.

قيم البحث

اقرأ أيضاً

We report multi-frequency circular polarization measurements for the four extragalactic radio sources 0056-00, 0716+71, 3C138 and 3C161 taken at the Effelsberg 100-m radiotelescope. The data reduction is based on a new calibration procedure that allo ws the contemporary measurement of the four Stokes parameters at different frequencies with single-dish radiotelescopes. We are in the process of framing the observed full Stokes spectra within a theoretical model that explains that the level of measured circular polarization as Faraday conversion.
In the framework of the Standard Model Extension (SME), we present improved constraints on anisotropic Lorentz invariance and Charge-Parity-Time (CPT) violation by searching for astrophysical signals of cosmic vacuum birefringence with broadband opti cal polarimetry of high redshift astronomical sources, including Active Galactic Nuclei and Gamma-Ray Burst afterglows. We generalize the work in Kislat 2018, which studied the SME mass dimension $d = 4$ case, to arbitrary mass dimension for both the CPT-even and CPT-odd cases. We then present constraints on all 10, 16, and 42 anisotropic birefringent SME coefficients for dimension $d = 4$, $d = 5$, and $d = 6$ models, respectively, using 7554 observations for odd d and 7376 observations for even d of 1278 unique sources on the sky, which, to our knowledge, comprises the most complete catalog of optical polarization from extragalactic sources in the literature to date. Compared to the smaller sample of 44 and 45 broadband optical polarimetry observations analyzed in Kislat 2018 and Kislat and Krawczynski 2017, our dimension $d = 4$ and $d = 5$ average constraints are more sensitive by factors of 35 and 10, corresponding to a reduction in allowed SME parameter space volume for these studies of 15 and 16 orders of magnitude, respectively. Constraints from individual lines of sight can be significantly stronger using spectropolarimetry. Nevertheless, due to the increased number of observations and lines of sight in our catalog, our average $d = 4$ and $d = 5$ broadband constraints are within factors of 2 and 12 of previous constraints using spectropolarimetry from Kislat 2018 and Kislat and Krawczynski 2017, respectively, using an independent data set and an improved analysis method. By contrast, our anisotropic constraints on all 42 birefringent SME coefficients for $d = 6$ are the first to be presented in the literature.
Lorentz invariance is one of the basic ingredients of quantum field theories and violations of it are stringently constrained experimentally. Therefore, the possibility of Lorentz violation (LV) is usually realized at very high energy scales, resulti ng in a strong suppression of it (by the new scale) in experiments. The Standard-Model Extension (SME) parameterizes LV in a model-independent way, respecting $SU(2)_L$ gauge invariance. This means, e.g., that the neutrino and charged-lepton sectors are linked to each other. Hence, on the one hand, any modification of neutrino properties simultaneously gives rise to effects for charged leptons, which is why the tight limits on flavour-off-diagonal LV for neutrinos imply new bounds on modifications of charged leptons. On the other hand, LV for left-handed charged leptons implies LV for neutrinos. Since LV modifications of the charged-lepton sector are, in general, even more constraining than effects in the flavour-diagonal neutrino sector, we obtain novel tight bounds on LV in the latter. Subsequently, we apply the same approach to an analysis of time-of-flight data for neutrinos (detected by IceCube) and photons from gamma ray bursts where discrepancies have been observed. Our finding is that an explanation of the arrival time difference between neutrino and photon events by dim-5 operators in the neutrino sector would lead to unacceptably large LV effects in the charged-lepton sector.
85 - I. Altarev , C. A. Baker , G. Ban 2010
We propose an original test of Lorentz invariance in the interaction between a particle spin and an electromagnetic field and report on a first measurement using ultracold neutrons. We used a high sensitivity neutron electric dipole moment (nEDM) spe ctrometer and searched for a direction dependence of a nEDM signal leading to a modulation of its magnitude at periods of 12 and 24 hours. We constrain such a modulation to $d_{12} < 15 times 10^{-25} e,{rm cm}$ and $d_{24} < 10 times 10^{-25} e,{rm cm}$ at 95~% C.L. The result translates into a limit on the energy scale for this type of Lorentz violation effect at the level of ${cal E}_{LV} > 10^{10}$~GeV.
131 - Alan Kostelecky , Neil Russell , 2008
Exceptional sensitivity to spacetime torsion can be achieved by searching for its couplings to fermions. Recent experimental searches for Lorentz violation are exploited to extract new constraints involving 19 of the 24 independent torsion components down to levels of order 10^{-31} GeV.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا