ﻻ يوجد ملخص باللغة العربية
After the discovery of the Higgs boson in 2012, particle physics has entered an exciting era. An important question is whether the Standard Model of particle physics correctly describes the scalar sector realized by nature, or whether it is part of a more extended model, featuring additional particle content. A prime way to test this is to probe models with extended scalar sectors at future collider facilities. We here discuss such models in the context of high-luminosity LHC, a possible proton-proton collider with 27 and 100 TeV center-of-mass energy, as well as future lepton colliders with various center-of-mass energies.
After the discovery of a particle that complies with the properties of the Higgs boson predicted by the Standard Model, particle physics has entered an exciting era. One important question is whether the scalar sector realized by Nature indeed corres
In this work, I briefly report on constraints that can be obtained on new physics models that extend the scalar sector of the Standard Model (SM) of particle physics at the LHC. I concentrate on a few simple examples which serve to demonstrate advant
We give a brief overview of beyond the Standard Model (BSM) theories with an extended scalar sector and their phenomenological status in the light of recent experimental results. We discuss the relevant theoretical and experimental constraints, and s
We discuss a possibility that the parameter space of the two Higgs doublet model is significantly narrowed down by considering the synergy between direct searches for additional Higgs bosons at the LHC and its luminosity upgraded operation and precis
New physics close to the electroweak scale is well motivated by a number of theoretical arguments. However, colliders, most notably the Large Hadron Collider (LHC), have failed to deliver evidence for physics beyond the Standard Model. One possibilit