ترغب بنشر مسار تعليمي؟ اضغط هنا

Submillimeter imaging of the Galactic Center starburst Sgr B2. Warm molecular, atomic, and ionized gas far from massive star-forming cores

61   0   0.0 ( 0 )
 نشر من قبل Miriam G. Santa-Maria
 تاريخ النشر 2021
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We present 168 arcmin^2 spectral images of the Sgr B2 complex taken with Herschel/SPIRE-FTS. We detect ubiquitous emission from CO (up to J=12-11), H2O, [CI]492, 809 GHz, and [NII] 205 um lines. We also present maps of the SiO, N2H+, HCN, and HCO+ emission obtained with the IRAM30m telescope. The cloud environment dominates the emitted FIR (80%), H2O 752 GHz (60 %) mid-J CO (91%), and [CI] (93 %) luminosity. The region shows very extended [NII] emission (spatially correlated with the 24 and 70 um dust emission). The observed FIR luminosities imply G_0~10^3. The extended [CI] emission arises from a pervasive component of neutral gas with n_H~10^3 cm-3. The high ionization rates, produced by enhanced cosmic-ray (CR) fluxes, drive the gas heating to Tk~40-60 K. The mid-J CO emission arises from a similarly extended but more pressurized gas component (P_th~10^7 K cm-3). Specific regions of enhanced SiO emission and high CO-to-FIR intensity ratios (>10^-3) show mid-J CO emission compatible with shock models. A major difference compared to more quiescent star-forming clouds in the disk of our Galaxy is the extended nature of the SiO and N2H+ emission in Sgr B2. This can be explained by the presence of cloud-scale shocks, induced by cloud-cloud collisions and stellar feedback, and the much higher CR ionization rate (>10^-15 s-1) leading to overabundant H3+ and N2H+. Hence, Sgr B2 hosts a more extreme environment than star-forming regions in the disk of the Galaxy. As a usual template for extragalactic comparisons, Sgr B2 shows more similarities to ultra luminous infrared galaxies such as Arp 220, including a deficit in the [CI]/FIR and [NII]/FIR intensity ratios, than to pure starburst galaxies such as M82. However, it is the extended cloud environment, rather than the cores, that serves as a useful template when telescopes do not resolve such extended regions in galaxies.



قيم البحث

اقرأ أيضاً

We report ALMA observations with resolution $approx0.5$ at 3 mm of the extended Sgr B2 cloud in the Central Molecular Zone (CMZ). We detect 271 compact sources, most of which are smaller than 5000 AU. By ruling out alternative possibilities, we concl ude that these sources consist of a mix of hypercompact HII regions and young stellar objects (YSOs). Most of the newly-detected sources are YSOs with gas envelopes which, based on their luminosities, must contain objects with stellar masses $M_*gtrsim8$ M$_odot$. Their spatial distribution spread over a $sim12times3$ pc region demonstrates that Sgr B2 is experiencing an extended star formation event, not just an isolated `starburst within the protocluster regions. Using this new sample, we examine star formation thresholds and surface density relations in Sgr B2. While all of the YSOs reside in regions of high column density ($N(H_2)gtrsim2times10^{23}$ cm$^{-2}$), not all regions of high column density contain YSOs. The observed column density threshold for star formation is substantially higher than that in solar vicinity clouds, implying either that high-mass star formation requires a higher column density or that any star formation threshold in the CMZ must be higher than in nearby clouds. The relation between the surface density of gas and stars is incompatible with extrapolations from local clouds, and instead stellar densities in Sgr B2 follow a linear $Sigma_*-Sigma_{gas}$ relation, shallower than that observed in local clouds. Together, these points suggest that a higher volume density threshold is required to explain star formation in CMZ clouds.
We have conducted a search for ionized gas at 3.6 cm, using the Very Large Array, towards 31 Galactic intermediate- and high-mass clumps detected in previous millimeter continuum observations. In the 10 observed fields, 35 HII regions are identified, of which 20 are newly discovered. Many of the HII regions are multiply peaked indicating the presence of a cluster of massive stars. We find that the ionized gas tends to be associated towards the millimeter clumps; of the 31 millimeter clumps observed, 9 of these appear to be physically related to ionized gas, and a further 6 have ionized gas emission within 1. For clumps with associated ionized gas, the combined mass of the ionizing massive stars is compared to the clump masses to provide an estimate of the instantaneous star formation efficiency. These values range from a few percent to 25%, and have an average of 7 +/- 8%. We also find a correlation between the clump mass and the mass of the ionizing massive stars within it, which is consistent with a power law. This result is comparable to the prediction of star formation by competitive accretion that a power law relationship exists between the mass of the most massive star in a cluster and the total mass of the remaining stars.
136 - Subhashis Roy 2013
We have observed the Galactic Center (GC) region at 0.154 and 0.255 GHz with the GMRT. A total of 62 compact likely extragalactic sources are detected. Their scattering sizes go down linearly with increasing angular distance from the GC up to about 1 deg. The apparent scattering sizes of sources are more than an order of magnitude down than predicted earlier by the NE2001 model of Galactic electron distribution within 359.5 deg < l < 0.5 deg and -0.5 deg <b <0.5 deg (Hyperstrong scattering region) of the Galaxy. High free-free optical depths are observed towards most of the extended nonthermal sources within 0.6 deg from the GC. Significant variation of optical depth indicate the absorbing medium is patchy at an angular scale of 10 and electron density is ~10 per cc that matches with the NE2001 model. This model predicts the extragalactic (EG) sources to be resolved out from 1.4 GHz interferometric surveys. However, 8 likely EG sources out of 10 expected in the region are present in 1.4 GHz catalog. Ionized interfaces of dense molecular clouds to the ambient medium are most likely responsible for strong scattering and low radio frequency absorption. However, dense GC clouds traced by CS $J=1-0$ emission are found to have a narrow distribution of ~0.2 deg across the Galactic plane. Angular distribution of most of the EG sources seen through the so called Hyperstrong scattering region are random in $b$, and typically ~7 out of 10 sources will not be seen through to the dense molecular clouds, and it explains why most of them are not scatter broadened at 1.4 GHz.
238 - Sarah Kendrew 2013
We present near-infrared spectroscopy and 1 mm line and continuum observations of a recently identified site of high mass star formation likely to be located in the Central Molecular Zone near Sgr C. Located on the outskirts of the massive evolved HI I region associated with Sgr C, the area is characterized by an Extended Green Object measuring ~10 in size (0.4 pc), whose observational characteristics suggest the presence of an embedded massive protostar driving an outflow. Our data confirm that early-stage star formation is taking place on the periphery of the Sgr C HII region, with detections of two protostellar cores and several knots of H2 and Brackett gamma emission alongside a previously detected compact radio source. We calculate the cores joint mass to be ~10^3 Msun, with column densities of 1-2 x 10^24 cm-2. We show the host molecular cloud to hold ~10^5 Msun of gas and dust with temperatures and column densities favourable for massive star formation to occur, however, there is no evidence of star formation outside of the EGO, indicating that the cloud is predominantly quiescent. Given its mass, density, and temperature, the cloud is comparable to other remarkable non-star-forming clouds such as G0.253 in the Eastern CMZ.
It has been hypothesized that photons from young, massive star clusters are responsible for maintaining the ionization of diffuse warm ionized gas seen in both the Milky Way and other disk galaxies. For a theoretical investigation of the warm ionized medium (WIM), it is crucial to solve radiation transfer equations where the ISM and clusters are modeled self-consistently. To this end, we employ a Solar neighborhood model of TIGRESS, a magnetohydrodynamic simulation of the multiphase, star-forming ISM, and post-process the simulation with an adaptive ray tracing method to transfer UV radiation from star clusters. We find that the WIM volume filling factor is highly variable, and sensitive to the rate of ionizing photon production and ISM structure. The mean WIM volume filling factor rises to ~0.15 at |z|~1 kpc. Approximately half of ionizing photons are absorbed by gas and half by dust; the cumulative ionizing photon escape fraction is 1.1%. Our time-averaged synthetic H$alpha$ line profile matches WHAM observations on the redshifted (outflowing) side, but has insufficient intensity on the blueshifted side. Our simulation matches the Dickey-Lockman neutral density profile well, but only a small fraction of snapshots have high-altitude WIM density consistent with Reynolds Layer estimates. We compute a clumping correction factor C = <n_e>/sqrt<n_e^2>~0.2 that is remarkably constant with distance from the midplane and time; this can be used to improve estimates of ionized gas mass and mean electron density from observed H$alpha$ surface brightness profiles in edge-on galaxies.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا