ترغب بنشر مسار تعليمي؟ اضغط هنا

Spin liquid and ferroelectricity close to a quantum critical point in PbCuTe$_2$O$_6$

53   0   0.0 ( 0 )
 نشر من قبل Christian Thurn
 تاريخ النشر 2021
  مجال البحث فيزياء
والبحث باللغة English
 تأليف Ch. Thurn




اسأل ChatGPT حول البحث

Geometrical frustration among interacting spins combined with strong quantum fluctuations destabilize long-range magnetic order in favor of more exotic states such as spin liquids. By following this guiding principle, a number of spin liquid candidate systems were identified in quasi-two-dimensional (quasi-2D) systems. For 3D, however, the situation is less favorable as quantum fluctuations are reduced and competing states become more relevant. Here we report a comprehensive study of thermodynamic, magnetic and dielectric properties on single crystalline and pressed-powder samples of PbCuTe$_2$O$_6$, a candidate material for a 3D frustrated quantum spin liquid featuring a hyperkagome lattice. Whereas the low-temperature properties of the powder samples are consistent with the recently proposed quantum spin liquid state, an even more exotic behaviour is revealed for the single crystals. These crystals show ferroelectric order at $T_{text{FE}} approx 1,text{K}$, accompanied by strong lattice distortions, and a modified magnetic response -- still consistent with a quantum spin liquid -- but with clear indications for quantum critical behaviour.



قيم البحث

اقرأ أيضاً

311 - E. Svanidze , L. Liu , B. Frandsen 2014
A quantum critical point (QCP) occurs upon chemical doping of the weak itinerant ferromagnet Sc_{3.1}In. Remarkable for a system with no local moments, the QCP is accompanied by non-Fermi liquid (NFL) behavior, manifested in the logarithmic divergenc e of the specific heat both in the ferro- and the paramagnetic states. Sc_{3.1}In displays critical scaling and NFL behavior in the ferromagnetic state, akin to what had been observed only in f-electron, local moment systems. With doping, critical scaling is observed close to the QCP, as the critical exponents, and delta, gamma and beta have weak composition dependence, with delta nearly twice, and beta almost half of their respective mean-field values. The unusually large paramagnetic moment mu_PM~1.3 mu_B/F.U. is nearly composition-independent. Evidence for strong spin fluctuations, accompanying the QCP at x_c = 0.035 +- 0.005, may be ascribed to the reduced dimensionality of Sc_{3.1}In, associated with the nearly one-dimensional Sc-In chains.
We report an experimental determination of the phase boundary between a quantum paramagnetic state and the proposed spin Bose-Einstein condensate of triplons in the spin gap compound BaCuSi2O6. The ordering temperature is related to the proximity to a quantum critical point at the lower critical magnetic field H_c1 = 23.52 +/- 0.03T by a power law parameterized by critical exponent nu. We obtain an experimental estimate of nu = 0.63 +/- 0.03 which is in good agreement with the mean field prediction of nu = 2/3 for the 3D XY model, used to describe the Bose condensation of a 3D dilute interacting Bose gas.
We study the temperature dependence of the conductivity due to quantum interference processes for a two-dimensional disordered itinerant electron system close to a ferromagnetic quantum critical point. Near the quantum critical point, the cross-over between diffusive and ballistic regimes of quantum interference effects occurs at a temperature $ T^{ast}=1/tau gamma (E_{F}tau)^{2}$, where $gamma $ is the parameter associated with the Landau damping of the spin fluctuations, $tau $ is the impurity scattering time, and $E_{F}$ is the Fermi energy. For a generic choice of parameters, $T^{ast}$ is smaller than the nominal crossover scale $1/tau $. In the ballistic quantum critical regime, the conductivity behaves as $T^{1/3}$.
The topological property of SrRu$_2$O$_6$ and isostructural CaOs$_2$O$_6$ under various strain conditions is investigated using density functional theory. Based on an analysis of parity eigenvalues, we anticipate that a three-dimensional strong topol ogical insulating state should be realized when band inversion is induced at the A point in the hexagonal Brillouin zone. For SrRu$_2$O$_6$, such a transition requires rather unrealistic tuning, where only the $c$ axis is reduced while other structural parameters are unchanged. However, given the larger spin-orbit coupling and smaller lattice constants in CaOs$_2$O$_6$, the desired topological transition does occur under uniform compressive strain. Our study paves a way to realize a topological insulating state in a complex oxide, which has not been experimentally demonstrated so far.
Single crystals of the three-dimensional frustrated magnet and spin liquid candidate compound PbCuTe$_2$O$_6$, were grown using both the Travelling Solvent Floating Zone (TSFZ) and the Top-Seeded Solution Growth (TSSG) techniques. The growth conditio ns were optimized by investigating the thermal properties. The quality of the crystals was checked by polarized optical microscopy, X-ray Laue and X-ray powder diffraction, and compared to the polycrystalline samples. Excellent quality crystals were obtained by the TSSG method. Magnetic measurements of these crystals revealed a small anisotropy for different crystallographic directions in comparison with the previously reported data. The heat capacity of both single crystal and powder samples reveal a transition anomaly around 1~K. Curiously the position and magnitude of the transition are strongly dependent on the crystallite size and it is almost entirely absent for the smallest crystallites. A structural transition is suggested which accompanies the reported ferroelectric transition, and a scenario whereby it becomes energetically unfavourable in small crystallites is proposed.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا