ترغب بنشر مسار تعليمي؟ اضغط هنا

Radial stellar populations of AGN-host dwarf galaxies in SDSS-IV MaNGA survey

123   0   0.0 ( 0 )
 نشر من قبل Wei Cai
 تاريخ النشر 2021
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Based on MaNGA integral field unit (IFU) spectroscopy we search 60 AGN candidates, which have stellar masses $M_{star}leqslant5times10^{9}$$M_{odot}$ and show AGN ionization signatures in the BPT diagram. For these AGN candidates, we derive the spatially resolved stellar population with the stellar population synthesis code STARLIGHT and measure the gradients of the mean stellar age and metallicity. We find that the gradients of mean stellar age (metallicity) of individual AGN-host dwarfs are diverse in 0-0.5 Re, 0.5-1 Re and 0-1 Re. However, the overall behavior of the mean stellar age (metallicity) profiles tend to be flat, as the median values of the gradients are close to zero. We further study the overall behavior of the mean stellar age (metallicity) by plotting the co-added radial profiles for the AGN sample and compare with a control sample with similar stellar mass. We find that the median values of light-weighted mean stellar ages of AGN sample are as old as 2-3 ~Gyr within 2 Re,which are about 4-7 times older than those of the control sample. Meanwhile, most of the AGN candidates are low-level AGNs, as only eight sources have L[OIII]>$10^{39.5}$~erg~s$^{-1}$. Hence, the AGNs in dwarf galaxies might accelerate the evolution of galaxies by accelerating the consumption of the gas, resulting in an overall quenching of the dwarf galaxies, and the AGNs also become weak due to the lack of gas. The median values of mass-weighted mean stellar age of both samples within 2 $Re$ are similar and as old as about 10~Gyr, indicating that the stellar mass is mainly contributed by old stellar populations.The gradients of co-added mean stellar metallicity for both samples tend to be negative but close to zero, and the similar mean stellar metallicity profiles for both samples indicate that the chemical evolution of the host galaxy is not strongly influenced by the AGN.



قيم البحث

اقرأ أيضاً

We present here the characterization of the main properties of a sample of 98 AGN host galaxies, both type-II and type-I, in comparison with those of about 2700 non-active galaxies observed by the MaNGA survey. We found that AGN hosts are morphologic ally early-type or early-spirals. For a given morphology AGN hosts are, in average, more massive, more compact, more central peaked and rather pressurethan rotational-supported systems. We confirm previous results indicating that AGN hosts are located in the intermediate/transition region between star-forming and non-star-forming galaxies (i.e., the so-called green valley), both in the ColorMagnitude and the star formation main sequence diagrams. Taking into account their relative distribution in terms of the stellar metallicity and oxygen gas abundance and a rough estimation of their molecular gas content, we consider that these galaxies are in the process of halting/quenching the star formation, in an actual transition between both groups. The analysis of the radial distributions of the starformation rate, specific star-formation rate, and molecular gas density shows that the quenching happens from inside-out involving both a decrease of the efficiency of the star formation and a deficit of molecular gas. All the intermediate data-products used to derive the results of our analysis are distributed in a database including the spatial distribution and average properties of the stellar populations and ionized gas, published as a Sloan Digital Sky Survey Value Added Catalog being part of the 14th Data Release: http://www.sdss.org/dr14/manga/manga-data/manga-pipe3d-value-added-catalog/
We perform a fossil record analysis for ~800 low-redshift spiral galaxies, using STARLIGHT applied to integral field spectroscopic observations from the SDSS-IV MaNGA survey to obtain fully spatially-resolved high-resolution star formation histories (SFHs). From the SFHs, we are able to build maps indicating the present-day distribution of stellar populations of different ages in each galaxy. We find small negative mean age gradients in most spiral galaxies, especially at high stellar mass, which reflects the formation times of stellar populations at different galactocentric radii. We show that the youngest (<10^{8.5} years) populations exhibit significantly more extended distributions than the oldest (>10^{9.5} years), again with a strong dependence on stellar mass. By interpreting the radial profiles of time slices as indicative of the size of the galaxy at the time those populations had formed, we are able to trace the simultaneous growth in mass and size of the spiral galaxies over the last 10 Gyr. Despite finding that the evolution of the measured light-weighted radius is consistent with inside-out growth in the majority of spiral galaxies, the evolution of an equivalent mass-weighted radius has changed little over the same time period. Since radial migration effects are likely to be small, we conclude that the growth of disks in spiral galaxies has occurred predominantly through an inside-out mode (with the effect greatest in high-mass galaxies), but this has not had anywhere near as much impact on the distribution of mass within spiral galaxies.
In this paper we present our studies on the stellar populations and star formation histories (SFHs) for the Reines et al. sample of 136 dwarf galaxies which host active galactic nuclei (AGNs), selected from the Sloan Digital Sky Survey Data Release 8 . We derive stellar populations and reconstruct SFHs for these AGN-host dwarfs using the stellar population synthesis code STARLIGHT. Our results suggest that these AGN-host dwarfs have assembled their stellar masses within a narrow period of time with the stellar mass-weighted ages in the range of $10^9-10^{10}$yr, but show a wide diversity of SFHs with the luminosity-weighted stellar ages in the range of $10^7-10^{10}$yr. The old population ($t>10^9$yr) contributes most to the galaxy light for the majority of the sample; the young population ($t<10^8$yr) also appears in significant but widely varying fractions, while the intermediate-age population ($10^8<t<10^9$yr) in general contributes less to the optical continuum at 4020 $r{A}$. We also find that these dwarfs follow a similar mass-metallicity relation to normal star-forming galaxies, indicating that AGNs have little effect on the chemical evolution of the host galaxy. We further investigate the relation between the derived SFHs and morphology of the host galaxy, and find no correlation. Comparing the SFHs with the luminosity of the [OIII] $lambda$5007 line ($L_{rm [OIII]}$), we find that there exists a mild correlation when $L_{rm [OIII]} > 10^{39}$erg s$^{-1}$, indicating that there is a physical connection between star formation and AGN activities in these dwarf galaxies.
We derive ages, metallicities, and individual element abundances of early- and late-type galaxies (ETGs and LTGs) out to 1.5 R$_e$. We study a large sample of 1900 galaxies spanning $8.6 - 11.3 log M/M_{odot}$ in stellar mass, through key absorption features in stacked spectra from the SDSS-IV/MaNGA survey. We use mock galaxy spectra with extended star formation histories to validate our method for LTGs and use corrections to convert the derived ages into luminosity- and mass-weighted quantities. We find flat age and negative metallicity gradients for ETGs and negative age and negative metallicity gradients for LTGs. Age gradients in LTGs steepen with increasing galaxy mass, from $-0.05pm0.11~log$ Gyr/R$_e$ for the lowest mass galaxies to $-0.82pm0.08~log$ Gyr/R$_e$ for the highest mass ones. This strong gradient-mass relation has a slope of $-0.70pm0.18$. Comparing local age and metallicity gradients with the velocity dispersion $sigma$ within galaxies against the global relation with $sigma$ shows that internal processes regulate metallicity in ETGs but not age, and vice versa for LTGs. We further find that metallicity gradients with respect to local $sigma$ show a much stronger dependence on galaxy mass than radial metallicity gradients. Both galaxy types display flat [C/Fe] and [Mg/Fe], and negative [Na/Fe] gradients, whereas only LTGs display gradients in [Ca/Fe] and [Ti/Fe]. ETGs have increasingly steep [Na/Fe] gradients with local $sigma$ reaching $6.50pm0.78$ dex/$log$ km/s for the highest masses. [Na/Fe] ratios are correlated with metallicity for both galaxy types across the entire mass range in our sample, providing support for metallicity dependent supernova yields.
Bars in galaxies are thought to stimulate both inflow of material and radial mixing along them. Observational evidence for this mixing has been inconclusive so far however, limiting the evaluation of the impact of bars on galaxy evolution. We now use results from the MaNGA integral field spectroscopic survey to characterise radial stellar age and metallicity gradients along the bar and outside the bar in 128 strongly barred galaxies. We find that age and metallicity gradients are flatter in the barred regions of almost all barred galaxies when compared to corresponding disk regions at the same radii. Our results re-emphasize the key fact that by azimuthally averaging integral field spectroscopic data one loses important information from non-axisymmetric galaxy components such as bars and spiral arms. We interpret our results as observational evidence that bars are radially mixing material in galaxies of all stellar masses, and for all bar morphologies and evolutionary stages.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا