ترغب بنشر مسار تعليمي؟ اضغط هنا

Mapping the Electromagnetic Fields of Heavy-Ion Collisions with the Breit-Wheeler Process

373   0   0.0 ( 0 )
 نشر من قبل James Brandenburg
 تاريخ النشر 2021
  مجال البحث
والبحث باللغة English




اسأل ChatGPT حول البحث

Ultra-relativistic heavy-ion collisions are expected to produce the strongest electromagnetic fields in the known Universe. These highly-Lorentz contracted fields can manifest themselves as linearly polarized quasi-real photons that can interact via the Breit-Wheeler process to produce lepton anti-lepton pairs. The energy and momentum distribution of the produced dileptons carry information about the strength and spatial distribution of the colliding fields. Recently it has been demonstrated that photons from these fields can interact even in heavy-ion collisions with hadronic overlap, providing a purely electromagnetic probe of the produced medium. In this review we discuss the recent theoretical progress and experimental advances for mapping the ultra-strong electromagnetic fields produced in heavy-ion collisions via measurement of the Breit-Wheeler process.

قيم البحث

اقرأ أيضاً

We calculate the cross section and transverse-momentum ($P_{bot}$) distribution of the Breit-Wheeler process in relativistic heavy-ion collisions and their dependence on collision impact parameter ($b$). To accomplish this, the Equivalent Photon Appr oximation (EPA) was generalized in a more differential way compared to the approach traditionally used for inclusive collisions. In addition, a lowest-order QED calculation with straightline assumption was performed as a standard baseline for comparison. The cross section as a function of $b$ is consistent with previous calculations using the equivalent one-photon distribution function. Most importantly, the $P_{bot}$ shape from this model is strongly dependent on impact parameter and can quantitatively explain the $P_{bot}$ broadening observed recently by RHIC and LHC experiments. This broadening effect from the initial QED field strength should be considered in studying possible trapped magnetic field and multiple scattering in a Quark-Gluon Plasma (QGP). The impact-parameter sensitive observable also provides a controllable tool for studying extreme electromagnetic fields.
82 - F. Arleo , P. Aurenche , F. Bopp 2003
Various pion and photon production mechanisms in high-energy nuclear collisions at RHIC and LHC are discussed. Comparison with RHIC data is done whenever possible. The prospect of using electromagnetic probes to characterize quark-gluon plasma formation is assessed.
We present a brief review of recent theoretical developments and related phenomenological approaches for understanding the initial state of heavy-ion collisions, with emphasis on the Color Glass Condensate formalism.
We investigate the measurement of Hanbury Brown-Twiss (HBT) photon correlations as an experimental tool to discriminate different sources of photon enhancement, which are proposed to simultaneously reproduce the direct photon yield and the azimuthal anisotropy measured in nuclear collisions at RHIC and the LHC. To showcase this, we consider two different scenarios in which we enhance the yields from standard hydrodynamical simulations. In the first, additional photons are produced from the early pre-equilibrium stage computed from the textit{bottom-up} thermalization scenario. In the second, the thermal rates are enhanced close to the pseudo-critical temperature $T_capprox 155,text{MeV}$ using a phenomenological ansatz. We compute the correlators for relative momenta $q_o, ,q_s$ and $q_l$ for different transverse pair momenta, $K_perp$, and find that the longitudinal correlation is the most sensitive to different photon sources. Our results also demonstrate that including anisotropic pre-equilibrium rates enhances non-Gaussianities in the correlators, which can be quantified using the kurtosis of the correlators. Finally, we study the feasibility of measuring a direct photon HBT signal in the upcoming high-luminosity LHC runs. Considering only statistical uncertainties, we find that with the projected $sim 10^{10}$ heavy ion events a measurement of the HBT correlations for $K_perp<1, text{GeV}$ is statistically significant.
The three-dimensional pion and kaon emission source functions are extracted from the HKM model simulations of the central Au+Au collisions at the top RHIC energy $sqrt{s_{NN}}=200$ GeV. The model describes well the experimental data, previously obtai ned by the PHENIX and STAR collaborations using the imaging technique. In particular, the HKM reproduces the non-Gaussian heavy tails of the source function in the pair transverse momentum (out) and beam (long) directions, observed in the pion case and practically absent for kaons. The role of the rescatterings and long-lived resonances decays in forming of the mentioned long range tails is investigated. The particle rescatterings contribution to the out tail seems to be dominating. The model calculations also show the substantial relative emission times between pions (with mean value 14.5 fm/c in LCMS), including those coming from resonance decays and rescatterings. The prediction is made for the source functions in the LHC Pb+Pb collisions at $sqrt{s_{NN}}=2.76$ TeV, which are still not extracted from the measured correlation functions.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا