ﻻ يوجد ملخص باللغة العربية
We compute the non-planar contribution to the universal anomalous dimension of twist-two operators in N=4 supersymmetric Yang-Mills theory at four loops through Lorentz spin eighteen. Exploiting the results of this and our previous calculations along with recent analytic results for the cusp anomalous dimension and some expected analytic properties, we reconstruct a general expression valid for arbitrary Lorentz spin. We study various properties of this general result, such as its large-spin limit, its small-x limit, and others. In particular, we present a prediction for the non-planar contribution to the anomalous dimension of the single-magnon operator in the beta-deformed version of the theory.
We compute the nonplanar contribution to the universal anomalous dimension of the SU(4)-singlet twist-two operators in N=4 supersymmetric Yang-Mills theory at four loops through Lorentz spin 18. From this, we numerically evaluate the nonplanar contri
We present numerical results for the nonplanar lightlike cusp and collinear anomalous dimension at four loops in ${mathcal N} = 4$ SYM theory, which we infer from a calculation of the Sudakov form factor. The latter is expressed as a rational linear
We consider a double OPE limit of the planar four-point function of stress tensor multiplets in N = 4 SYM theory. Loop integrands for this correlator have been constructed to very high order, but the corresponding integrals are explicitly known only
We propose a mechanism for calculating anomalous dimensions of higher-spin twist-two operators in N=4 SYM. We consider the ratio of the two-point functions of the operators and of their superconformal descendants or, alternatively, of the three-point
We compute four-point correlation functions of scalar composite operators in the N=4 supercurrent multiplet at order g^4 using the N=1 superfield formalism. We confirm the interpretation of short-distance logarithmic behaviours in terms of anomalous