ﻻ يوجد ملخص باللغة العربية
We apply the method of graphical functions that was recently extended to six dimensions for scalar theories, to $phi^3$ theory and compute the $beta$ function, the wave function anomalous dimension as well as the mass anomalous dimension in the $overline{mbox{MS}}$ scheme to five loops. From the results we derive the corresponding renormalization group functions for the Lee-Yang edge singularity problem and percolation theory. After determining the $varepsilon$ expansions of the respective critical exponents to $mathcal{O}(varepsilon^5)$ we apply recent resummation technology to obtain improved exponent estimates in 3, 4 and 5 dimensions. These compare favourably with estimates from fixed dimension numerical techniques and refine the four loop results. To assist with this comparison we collated a substantial amount of data from numerical techniques which are included in tables for each exponent.
We show that a class of $mathcal{PT}$ symmetric non-Hermitian Hamiltonians realizing the Yang-Lee edge singularity exhibits an entanglement transition in the long-time steady state evolved under the Hamiltonian. Such a transition is induced by a leve
We have computed the five-loop corrections to the scale dependence of the renormalized coupling constant for Quantum Chromodynamics (QCD), its generalization to non-Abelian gauge theories with a simple compact Lie group, and for Quantum Electrodynami
We consider a symmetric scalar theory with quartic coupling in 4-dimensions. We show that the 4 loop 2PI calculation can be done using a renormalization group method. The calculation involves one bare coupling constant which is introduced at the leve
We renormalize the SU(N) Gross-Neveu model in the modified minimal subtraction (MSbar) scheme at four loops and determine the beta-function at this order. The theory ceases to be multiplicatively renormalizable when dimensionally regularized due to t
We renormalize the Wess-Zumino model at five loops in both the minimal subtraction (MSbar) and momentum subtraction (MOM) schemes. The calculation is carried out automatically using a routine that performs the D-algebra. Generalizations of the model