ترغب بنشر مسار تعليمي؟ اضغط هنا

Modelling cometary meteoroid stream traverses of the Martian Moons eXploration (MMX) spacecraft en route to Phobos

110   0   0.0 ( 0 )
 نشر من قبل Harald Kr\\\"uger
 تاريخ النشر 2021
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

The Martian Moons Exploration (MMX) spacecraft is a JAXA mission to Mars and its moons Phobos and Deimos. MMX will carry the Circum-Martian Dust Monitor (CMDM) which is a newly developed light-weight ($mathrm{650,g}$) large area ($mathrm{1,m^2}$) dust impact detector. Cometary meteoroid streams (also referred to as trails) exist along the orbits of comets, forming fine structures of the interplanetary dust cloud. The streams consist predominantly of the largest cometary particles (with sizes of approximately $mathrm{100,mu m}$ to 1~cm) which are ejected at low speeds and remain very close to the comet orbit for several revolutions around the Sun. The Interplanetary Meteoroid Environment for eXploration (IMEX) dust streams in space model is a new and recently published universal model for cometary meteoroid streams in the inner Solar System. We use IMEX to study the detection conditions of cometary dust stream particles with CMDM during the MMX mission in the time period 2024 to 2028. The model predicts traverses of 12 cometary meteoroid streams with fluxes of $mathrm{100,mu m}$ and bigger particles of at least $mathrm{10^{-3},m^{-2},day^{-1}}$ during a total time period of approximately 90~days. The highest flux of $mathrm{0.15,m^{-2},day^{-1}}$ is predicted for comet 114P/Wiseman-Skiff in October 2026. With its large detection area and high sensitivity CMDM will be able to detect cometary meteoroid streams en route to Phobos. Our simulation results for the Mars orbital phase of MMX also predict the occurrence of meteor showers in the Martian atmosphere which may be observable from the Martian surface with cameras on board landers or rovers. Finally, the IMEX model can be used to study the impact hazards imposed by meteoroid impacts on to large-area spacecraft structures that will be particularly necessary for crewed deep space missions.

قيم البحث

اقرأ أيضاً

The surface of the Martian moon Phobos exhibits two distinct geologic units, known as the red and blue units. The provenance of these regions is uncertain yet crucial to understanding the origin of the Martian moon and its interaction with the space environment. Here we show that Phobos orbital eccentricity can cause sufficient grain motion to refresh its surface, suggesting that space weathering is the likely driver of the dichotomy on the moons surface. In particular, we predict that blue regions are made up of pristine endogenic material that can be uncovered in steep terrain subject to large variations in the tidal forcing from Mars. The predictions of our model are consistent with current spacecraft observations which show that blue units are found near these regions.
Cometary meteoroid trails exist in the vicinity of comets, forming fine structure of the interplanetary dust cloud. The trails consist predominantly of cometary particles with sizes of approximately 0.1 mm to 1 cm which are ejected at low speeds and remain very close to the comet orbit for several revolutions around the Sun. When re-analysing the Helios dust data measured in the 1970s, Altobelli et al. (2006) recognized a clustering of seven impacts, detected in a very narrow region of space at a true anomaly angle of 135 deg, which the authors considered as potential cometary trail particles. We re-analyse these candidate cometary trail particles to investigate the possibility that some or all of them indeed originate from cometary trails and we constrain their source comets. The Interplanetary Meteoroid Environment for eXploration (IMEX) dust streams in space model is a new universal model for cometary meteoroid streams in the inner solar system, developed by Soja et al. (2015). Using IMEX we study cometary trail traverses by Helios. During ten revolutions around the Sun, and in the narrow region of space where Helios detected the candidate dust particles, the spacecraft repeatedly traversed the trails of comets 45P/Honda-Mrkos-Pajduvsakova and 72P/Denning-Fujikawa. Based on the detection times and particle impact directions, four detected particles are compatible with an origin from these two comets. We find a dust spatial density in these trails of about 10^-8 to 10^-7 m^-3. The in-situ detection and analysis of meteoroid trail particles which can be traced back to their source bodies by spacecraft-based dust analysers opens a new window to remote compositional analysis of comets and asteroids without the necessity to fly a spacecraft to or even land on those celestial bodies. This provides new science opportunities for future missions like Destiny+, Europa Clipper and IMAP.
The JAXA/ISAS spacecraft DESTINY$^+$ will be launched to the active asteroid (3200) Phaethon in 2022. Among the proposed core payload is the DESTINY+ Dust Analyzer (DDA) which is an upgrade of the Cosmic Dust Analyzer flown on the Cassini spacecraft to Saturn (Srama et al. 2011). We use two up-to-date computer models, the ESA Interplanetary Meteoroid Engineering Model (IMEM, Dikarev et al. 2005), and the interstellar dust module of the Interplanetary Meteoroid environment for EXploration model (IMEX; Sterken2013 et al., Strub et al. 2019) to study the detection conditions and fluences of interplanetary and interstellar dust with DDA. Our results show that a statistically significant number of interplanetary and interstellar dust particles will be detectable with DDA during the 4-years interplanetary cruise of DESTINY+. The particle impact direction and speed can be used to descriminate between interstellar and interplanetary particles and likely also to distinguish between cometary and asteroidal particles.
[Abridged] Asteroid mining is not necessarily a distant prospect. Hayabusa2 and OSIRIS-REx have recently rendezvoused with near-Earth asteroids and will return samples to Earth. While there is significant science motivation for these missions, there are also resource interests. Space agencies and commercial entities are particularly interested in ices and water-bearing minerals that could be used to produce rocket fuel in space. The internationally coordinated roadmaps of major space agencies depend on utilizing the natural resources of such celestial bodies. Several companies have already created plans for intercepting and extracting water and minerals from near-Earth objects, as even a small asteroid could have high economic worth. However, the low surface gravity of asteroids could make the release of mining waste and the subsequent formation of debris streams a consequence of asteroid mining. Strategies to contain material during extraction could still eventually require the purposeful jettison of waste to avoid managing unwanted mass. Using simulations, we explore the formation of mining debris streams by integrating particles released from four select asteroids. Radiation effects are included, and a range of debris sizes are explored. The simulation results are used to investigate the timescales for debris stream formation, the sizes of the streams, and the meteoroid fluxes compared with sporadic meteoroids. We find that for prodigious mining activities resulting in the loss of a few percent of the asteroids mass or more, it is possible to produce streams that exceed the sporadic flux during stream crossing for some meteoroid sizes. The result of these simulations are intended to highlight potential unintended consequences that could result from NewSpace activity, which could help to inform efforts to develop international space resource guidelines.
Potential microbial contamination of Martian moons, Phobos and Deimos, which can be brought about by transportation of Mars ejecta produced by meteoroid impacts on the Martian surface, has been comprehensively assessed in a statistical approach, base d on the most probable history of recent major gigantic meteoroid collisions on the Martian surface. This article is the first part of our study to assess potential microbial density in Mars ejecta departing from the Martian atmosphere, as a source of the second part where statistical analysis of microbial contamination probability is conducted. Potential microbial density on the Martian surface as the source of microorganisms was estimated by analogy to the terrestrial areas having the similar arid and cold environments, from which a probabilistic function was deduced as the asymptotic limit. Microbial survival rate during hypervelocity meteoroid collisions was estimated by numerical analysis of impact phenomena with and without taking internal friction and plastic deformation of the colliding meteoroid and the target ground into consideration. Trajectory calculations of departing ejecta through the Martian atmosphere were conducted with taking account of aerodynamic deceleration and heating by the aid of computational fluid dynamic analysis. It is found that Mars ejecta smaller than 0.03 m in diameter hardly reach the Phobos orbit due to aerodynamic deceleration, or mostly sterilized due to significant aerodynamic heating even though they can reach the Phobos orbit and beyond. Finally, the baseline dataset of microbial density in Mars ejecta departing for Martian moons has been presented for the second part of our study.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا