ترغب بنشر مسار تعليمي؟ اضغط هنا

Nematic and smectic stripe phases and stripe-SkX transformations

112   0   0.0 ( 0 )
 نشر من قبل Haitao Wu
 تاريخ النشر 2021
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Based on the findings of stripe skyrmions and the metastability of a state of an arbitrary number of skyrmions, precisely controlled manipulation of stripe skyrmions in pre-designed structures and mutual transformation between helical states and skyrmion crystals (SkXs) are demonstrated in chiral magnetic films. As a proof of the concept, we show how to use patterned magnetic fields and spin-transfer torques (STTs) to generate nematic and smectic stripe phases, as well as UST mosaic from three curved stripe skyrmions. Cutting one stripe into many pieces and coalescing several skyrmions into one by various external fields are good ways to transform helical states and SkXs from each other.



قيم البحث

اقرأ أيضاً

Quantum Hall stripe phases near half-integer filling factors $ u ge 9/2$ were predicted by Hartree-Fock (HF) theory and confirmed by discoveries of giant resistance anisotropies in high-mobility two-dimensional electron gases. A theory of such anisot ropy was proposed by MacDonald and Fisher, although they used parameters whose dependencies on the filling factor, electron density, and mobility remained unspecified. Here, we fill this void by calculating the hard-to-easy resistivity ratio as a function of these three variables. Quantitative comparison with experiment yields very good agreement which we view as evidence for the plain vanilla smectic stripe HF phases.
115 - Chenhao Jin , Zui Tao , Tingxin Li 2020
Stripe phases, in which the rotational symmetry of charge density is spontaneously broken, occur in many strongly correlated systems with competing interactions. One representative example is the copper-oxide superconductors, where stripe order is th ought to be relevant to the mechanism of high-temperature superconductivity. Identifying and studying the stripe phases in conventional strongly correlated systems are, however, challenging due to the complexity and limited tunability of these materials. Here we uncover stripe phases in WSe2/WS2 moire superlattices with continuously gate-tunable charge densities by combining optical anisotropy and electronic compressibility measurements. We find strong electronic anisotropy over a large doping range peaked at 1/2 filling of the moire superlattice. The 1/2-state is incompressible and assigned to a (insulating) stripe crystal phase. It can be continuously melted by thermal fluctuations around 35 K. The domain configuration revealed by wide-field imaging shows a preferential alignment along the high-symmetry axes of the moire superlattice. Away from 1/2 filling, we observe additional stripe crystals at commensurate filling 1/4, 2/5 and 3/5. The anisotropy also extends into the compressible regime of the system at incommensurate fillings, indicating the presence of electronic liquid crystal states. The observed filling-dependent stripe phases agree with the theoretical phase diagram of the extended Hubbard model on a triangular lattice in the flat band limit. Our results demonstrate that two-dimensional semiconductor moire superlattices are a highly tunable platform to study the stripe phases and their interplay with other symmetry breaking ground states.
115 - X. R. Wang , X. C. Hu , H. T. Wu 2021
Skyrmions are important in topological quantum field theory for being soliton solutions of a nonlinear sigma model and in information technology for their attractive applications. Skyrmions are believed to be circular and stripy spin textures appeare d in the vicinity of skyrmion crystals are termed spiral, helical, and cycloid spin orders, but not skyrmions. Here we present convincing evidences showing that those stripy spin textures are skyrmions, siblings of circular skyrmions in skyrmion crystals and cousins of isolated circular skyrmions. Specifically, isolated skyrmions are excitations when skyrmion formation energy is positive. The skyrmion morphologies are various stripy structures when the ground states of chiral magnetic films are skyrmions. The density of skyrmion number determines the morphology of condensed skyrmion states. At the extreme of one skyrmion in the whole sample, the skyrmion is a ramified stripe. As the skyrmion number density increases, individual skyrmion shapes gradually change from ramified stripes to rectangular stripes, and eventually to disk-like objects. At a low skyrmion number density, the natural width of stripes is proportional to the ratio between the exchange stiffness constant and Dzyaloshinskii-Moriya interaction coefficient. At a high skyrmion number density, skyrmion crystals are the preferred states. Our findings reveal the nature and properties of stripy spin texture, and open a new avenue for manipulating skyrmions, especially condensed skyrmions such as skyrmion crystals.
98 - X. Fu , Q. Shi , M. A. Zudov 2021
Anomalous nematic states, recently discovered in ultraclean two-dimensional electron gas, emerge from quantum Hall stripe phases upon further cooling. These states are hallmarked by a local minimum (maximum) in the hard (easy) longitudinal resistance and by an incipient plateau in the Hall resistance in nearly half-filled Landau levels. Here, we demonstrate that a modest in-plane magnetic field, applied either along $left < 110 right >$ or $left < 1bar10 right >$ crystal axis of GaAs, destroys anomalous nematic states and restores quantum Hall stripe phases aligned along their native $left < 110 right >$ direction. These findings confirm that anomalous nematic states are distinct from other ground states and will assist future theories to identify their origin.
We observe pronounced transport anisotropies in magneto-transport experiments performed in the two-dimensional electron system of a Si/SiGe heterostructure. They occur when an in-plane field is used to tune two Landau levels with opposite spin to ene rgetic coincidence. The observed anisotropies disappear drastically for temperatures above 1 K. We propose that our experimental findings may be caused by the formation of a unidirectional stripe phase oriented perpendicular to the in-plane field.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا