ﻻ يوجد ملخص باللغة العربية
Eccentricity has emerged as a potentially useful tool for helping to identify the origin of black hole mergers. However, owing to the large number of harmonics required to compute the amplitude of an eccentric signal, eccentric templates can be computationally very expensive, making statistical analyses to distinguish distributions from different formation channels very challenging. In this paper, we outline a method for estimating the signal-to-noise ratio for inspiraling binaries at lower frequencies such as those proposed for LISA and DECIGO. Our approximation can be useful more generally for any quasi-periodic sources. We argue that surprisingly, the signal-to-noise ratio evaluated at or near the peak frequency (of the power) is well approximated by using a constant noise curve, even if in reality the noise strain has power law dependence. We furthermore improve this initial estimate over our previous calculation to allow for frequency-dependence in the noise to expand the range of eccentricity and frequency over which our approximation applies. We show how to apply this method to get an answer accurate to within a factor of two over almost the entire projected observable frequency range. We emphasize this method is not a replacement for detailed signal processing. The utility lies chiefly in identifying theoretically useful discriminators among different populations and providing fairly accurate estimates for how well they should work. This approximation can furthermore be useful for narrowing down parameter ranges in a computationally economical way when events are observed. We furthermore show a distinctive way to identify events with extremely high eccentricity where the signal is enhanced relative to naive expectations on the high frequency end.
Computing signal-to-noise ratios (SNRs) is one of the most common tasks in gravitational-wave data analysis. While a single SNR evaluation is generally fast, computing SNRs for an entire population of merger events could be time consuming. We compute
We discuss the observable effects of enhanced black-hole mass loss in a black hole--neutron star (BH--NS) binary, due to the presence of a warped extra spatial dimension of curvature radius $L$ in the braneworld scenario. For some masses and orbital
The eccentricity of binary black hole mergers is predicted to be an indicator of the history of their formation. In particular, eccentricity is a strong signature of dynamical formation rather than formation by stellar evolution in isolated stellar s
We derive analytic expressions that provide Fourier domain gravitational wave (GW) response function for compact binaries inspiraling along moderately eccentric orbits. These expressions include amplitude corrections to the two GW polarization states
We report the discovery of the millisecond pulsar (MSP) PSR J1950+2414 ($P=4.3$ ms) in a binary system with an eccentric ($e=0.08$) 22-day orbit in Pulsar ALFA survey observations with the Arecibo telescope. Its companion star has a median mass of 0.