ﻻ يوجد ملخص باللغة العربية
Quantum information technologies demand highly accurate control over quantum systems. Achieving this requires control techniques that perform well despite the presence of decohering noise and other adverse effects. Here, we review a general technique for designing control fields that dynamically correct errors while performing operations using a close relationship between quantum evolution and geometric space curves. This approach provides access to the global solution space of control fields that accomplish a given task, facilitating the design of experimentally feasible gate operations for a wide variety of applications.
Precise control of an open quantum system is critical to quantum information processing, but is challenging due to inevitable interactions between the quantum system and the environment. We demonstrated experimentally at room temperature a type of dy
The ability to perform gates in multiqubit systems that are robust to noise is of crucial importance for the advancement of quantum information technologies. However, finding control pulses that cancel noise while performing a gate is made difficult
To solve classically hard problems, quantum computers need to be resilient to the influence of noise and decoherence. In such a fault-tolerant quantum computer, noise-induced errors must be detected and corrected in real-time to prevent them from pro
We consider the effects of certain forms of decoherence applied to both adiabatic and non-adiabatic geometric phase quantum gates. For a single qubit we illustrate path-dependent sensitivity to anisotropic noise and for two qubits we quantify the loss of entanglement as a function of decoherence.
We theoretically consider a cross-resonance (CR) gate implemented by pulse sequences proposed by Calderon-Vargas & Kestner, Phys. Rev. Lett. 118, 150502 (2017). These sequences mitigate systematic error to first order, but their effectiveness is limi