ترغب بنشر مسار تعليمي؟ اضغط هنا

Guidance Mechanism for Flexible Wing Aircraft Using Measurement-Interfaced Machine Learning Platform

209   0   0.0 ( 0 )
 نشر من قبل Wail Gueaieb
 تاريخ النشر 2021
والبحث باللغة English




اسأل ChatGPT حول البحث

The autonomous operation of flexible-wing aircraft is technically challenging and has never been presented within literature. The lack of an exact modeling framework is due to the complex nonlinear aerodynamic relationships governed by the deformations in the flexible-wing shape, which in turn complicates the controls and instrumentation setup of the navigation system. This urged for innovative approaches to interface affordable instrumentation platforms to autonomously control this type of aircraft. This work leverages ideas from instrumentation and measurements, machine learning, and optimization fields in order to develop an autonomous navigation system for a flexible-wing aircraft. A novel machine learning process based on a guiding search mechanism is developed to interface real-time measurements of wing-orientation dynamics into control decisions. This process is realized using an online value iteration algorithm that decides on two improved and interacting model-free control strategies in real-time. The first strategy is concerned with achieving the tracking objectives while the second supports the stability of the system. A neural network platform that employs adaptive critics is utilized to approximate the control strategies while approximating the assessments of their values. An experimental actuation system is utilized to test the validity of the proposed platform. The experimental results are shown to be aligned with the stability features of the proposed model-free adaptive learning approach.



قيم البحث

اقرأ أيضاً

The control problem of the flexible wing aircraft is challenging due to the prevailing and high nonlinear deformations in the flexible wing system. This urged for new control mechanisms that are robust to the real-time variations in the wings aerodyn amics. An online control mechanism based on a value iteration reinforcement learning process is developed for flexible wing aerial structures. It employs a model-free control policy framework and a guaranteed convergent adaptive learning architecture to solve the systems Bellman optimality equation. A Riccati equation is derived and shown to be equivalent to solving the underlying Bellman equation. The online reinforcement learning solution is implemented using means of an adaptive-critic mechanism. The controller is proven to be asymptotically stable in the Lyapunov sense. It is assessed through computer simulations and its superior performance is demonstrated on two scenarios under different operating conditions.
This work deals with the problem of estimating the turnaround time in the early stages of aircraft design. The turnaround time has a significant impact in terms of marketability and value creation potential of an aircraft and, for this reason, it sho uld be considered as an important driver of fuselage and cabin design decisions. Estimating the turnaround time during the early stages of aircraft design is therefore an essential task. This task becomes even more decisive when designers explore unconventional aircraft architectures or, in general, are still evaluating the fuselage design and its internal layout. In particular, it is of paramount importance to properly estimate the boarding and deboarding times, which contribute for up the 40% to the overall turnaround time. For this purpose, a tool, called SimBaD, has been developed and validated with publicly available data for existing aircraft of different classes. In order to demonstrate SimBaD capability of evaluating the influence of fuselage and cabin features on the turnaround time, its application to an unconventional box-wing aircraft architecture, known as PrandtlPlane, is presented as case study. Finally, considering standard scenarios provided by aircraft manufacturers, a comparison between the turnaround time of the PrandtlPlane and the turnaround time of a conventional competitor aircraft is presented.
The innovative concept of Electric Aircraft is a challenging topic involving different control objectives. For instance, it becomes possible to reduce the size and the weight of the generator by using the battery as an auxiliary generator in some ope ration phases. However, control strategies with different objectives can be conflicting and they can produce undesirable effects, even instability. For this reason an integrated design approach is needed, where stability can be guaranteed in any configuration. In other words, the design of the supervisory controller must be interlaced with that of low-level controllers. Moreover, uncertainties and noisy signals require robust control techniques and the use of adaptiveness in the control algorithm. In this paper, an aeronautic application aiming at recharging batteries and to use the battery to withstand generator overloads is addressed. Detailed and rigorous stability proofs are given for any control configuration, including the switching phases among different control objectives. Effectiveness of the proposed strategies is shown by using a detailed simulator including switching electronic components.
Due to the rapid development technologies for small unmanned aircraft systems (sUAS), the supply and demand market for sUAS is expanding globally. With the great number of sUAS ready to fly in civilian airspace, an sUAS aircraft traffic management sy stem that can guarantee the safe and efficient operation of sUAS is still at absence. In this paper, we propose a control protocol design and analysis method for sUAS traffic management (UTM) which can safely manage a large number of sUAS. The benefits of our approach are two folds: at the top level, the effort for monitoring sUAS traffic (authorities) and control/planning for each sUAS (operator/pilot) are both greatly reduced under our framework; and at the low level, the behavior of individual sUAS is guaranteed to follow the restrictions. Mathematical proofs and numerical simulations are presented to demonstrate the proposed method.
66 - Jerry An 2021
Decentralized conflict resolution for autonomous vehicles is needed in many places where a centralized method is not feasible, e.g., parking lots, rural roads, merge lanes, etc. However, existing methods generally do not fully utilize optimization in decentralized conflict resolution. We propose a decentralized conflict resolution method for autonomous vehicles based on a novel extension to the Alternating Directions Method of Multipliers (ADMM), called Online Adaptive ADMM (OA-ADMM), and on Model Predictive Control (MPC). OA-ADMM is tailored to online systems, where fast and adaptive real-time optimization is crucial, and allows the use of safety information about the physical system to improve safety in real-time control. We prove convergence in the static case and give requirements for online convergence. Combining OA-ADMM and MPC allows for robust decentralized motion planning and control that seamlessly integrates decentralized conflict resolution. The effectiveness of our proposed method is shown through simulations in CARLA, an open-source vehicle simulator, resulting in a reduction of 47.93% in mean added delay compared with the next best method.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا