ﻻ يوجد ملخص باللغة العربية
We generalize the holographic correspondence between topological gravity coupled to an abelian Chern-Simons theory in three dimensions and an ensemble average of Narains family of massless free bosons in two dimensions, discovered by Afkhami-Jeddi et al. and by Maloney and Witten. We find that the correspondence also works for toroidal orbifolds but not for K3 or Calabi-Yau sigma-models and not always for the minimal models. We conjecture that the correspondence requires that the central charge is equal to the critical central charge defined by the asymptotic density of states of the chiral algebra. For toroidal orbifolds, we extend the holographic correspondence to correlation functions of twist operators by using topological properties of rational tangles in the three-dimensional ball, which represent configurations of vortices associated to a discrete gauge symmetry.
We discuss the holographic description of Narain $U(1)^ctimes U(1)^c$ conformal field theories, and their potential similarity to conventional weakly coupled gravity in the bulk, in the sense that the effective IR bulk description includes $U(1)$ gra
We study the spectral statistics of primary operators in the recently formulated ensemble average of Narains family of free boson conformal field theories, which provides an explicit (though exotic) example of an averaged holographic duality. In part
We construct a map between a class of codes over $F_4$ and a family of non-rational Narain CFTs. This construction is complementary to a recently introduced relation between quantum stabilizer codes and a class of rational Narain theories. From the m
We develop further an approach to computing energy-energy correlations (EEC) directly from finite correlation functions. In this way, one completely avoids infrared divergences. In maximally supersymmetric Yang-Mills theory ($mathcal{N}=4$ sYM), we d
Concerning the gravitational corrections to the running of gauge couplings two different results were reported. Some authors claim that gravitational correction at the one-loop level indicates an interesting effect of universal gravitational decreasi