ﻻ يوجد ملخص باللغة العربية
Generative adversarial networks (GANs) have attained photo-realistic quality. However, it remains an open challenge of how to best control the image content. We introduce LatentKeypointGAN, a two-stage GAN that is trained end-to-end on the classical GAN objective yet internally conditioned on a set of sparse keypoints with associated appearance embeddings that respectively control the position and style of the generated objects and their parts. A major difficulty that we address with suitable network architectures and training schemes is disentangling the image into spatial and appearance factors without any supervision signals of either nor domain knowledge. We demonstrate that LatentKeypointGAN provides an interpretable latent space that can be used to re-arrange the generated images by re-positioning and exchanging keypoint embeddings, such as combining the eyes, nose, and mouth from different images for generating portraits. In addition, the explicit generation of keypoints and matching images enables a new, GAN-based methodology for unsupervised keypoint detection.
We introduce a technique for 3D human keypoint estimation that directly models the notion of spatial uncertainty of a keypoint. Our technique employs a principled approach to modelling spatial uncertainty inspired from techniques in robust statistics
Though generative adversarial networks (GANs) areprominent models to generate realistic and crisp images,they often encounter the mode collapse problems and arehard to train, which comes from approximating the intrinsicdiscontinuous distribution tran
In recent years, Generative Adversarial Networks have become ubiquitous in both research and public perception, but how GANs convert an unstructured latent code to a high quality output is still an open question. In this work, we investigate regressi
We introduce a simple but effective unsupervised method for generating realistic and diverse images. We train a class-conditional GAN model without using manually annotated class labels. Instead, our model is conditional on labels automatically deriv
Universal lesion detection in computed tomography (CT) images is an important yet challenging task due to the large variations in lesion type, size, shape, and appearance. Considering that data in clinical routine (such as the DeepLesion dataset) are