ترغب بنشر مسار تعليمي؟ اضغط هنا

Effects of Bound Diprotons and Enhanced Nuclear Reaction Rates on Stellar Evolution

55   0   0.0 ( 0 )
 نشر من قبل Fred C. Adams
 تاريخ النشر 2021
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Deuterium represents the only bound isotope in the universe with atomic mass number $A=2$. Motivated by the possibility of other universes, where the strong force could be stronger, this paper considers the effects of bound diprotons and dineutrons on stars. We find that the existence of additional stable nuclei with $A=2$ has relatively modest effects on the universe. Previous work indicates that Big Bang Nucleosynthesis (BBN) produces more deuterium, but does not lead to catastrophic heavy element production. This paper revisits BBN considerations and confirms that the universe is left with an ample supply of hydrogen and other light nuclei for typical cosmological parameters. Using the $MESA$ numerical package, we carry out stellar evolution calculations for universes with stable diprotons, with nuclear cross sections enhanced by large factors $X$. This work focuses on $X=10^{15}-10^{18}$, but explores the wider range $X$ = $10^{-3}-10^{18}$. For a given stellar mass, the presence of stable diprotons leads to somewhat brighter stars, with the radii and photospheric temperatures roughly comparable to thoese of red giants. The central temperature decreases from the characteristic value of $T_capprox1.5times10^7$ K for hydrogen burning down to the value of $T_capprox10^6$ K characteristic of deuterium burning. The stellar lifetimes are smaller for a given mass, but with the extended possible mass range, the smallest stars live for trillions of years, far longer than the current cosmic age. Finally, the enhanced cross sections allow for small, partially degenerate objects with mass $M_ast=1-10M_J$ to produce significant steady-state luminosity and thereby function as stars.


قيم البحث

اقرأ أيضاً

Primordial or big bang nucleosynthesis (BBN) is one of the three historical strong evidences for the big bang model. Standard BBN is now a parameter free theory, since the baryonic density of the Universe has been deduced with an unprecedented precis ion from observations of the anisotropies of the cosmic microwave background (CMB) radiation. There is a good agreement between the primordial abundances of 4He, D, 3He and 7Li deduced from observations and from primordial nucleosynthesis calculations. However, the 7Li calculated abundance is significantly higher than the one deduced from spectroscopic observations and remains an open problem. In addition, recent deuterium observations have drastically reduced the uncertainty on D/H, to reach a value of 1.6%. It needs to be matched by BBN predictions whose precision is now limited by thermonuclear reaction rate uncertainties. This is especially important as many attempts to reconcile Li observations with models lead to an increased D prediction. Here, we re-evaluates the D(p,g)3He, D(d,n)3He and D(d,p)3H reaction rates that govern deuterium destruction, incorporating new experimental data and carefully accounting for systematic uncertainties. Contrary to previous evaluations, we use theoretical ab initio models for the energy dependence of the S-factors. As a result, these rates increase at BBN temperatures, leading to a reduced value of D/H = (2.45$pm0.10)times10^{-5}$ (2$sigma$), in agreement with observations.
We calculate in this work the rates for the neutrino pair production by nucleon-nucleon bremsstrahlung taking into account the full contribution from a nuclear one-pion-exchange potential. It is shown that if the temperatures are low enough ($T leq 2 0 MeV$), the integration over the nuclear part can be done for the general case, ranging from the completely degenerate (D) to the non-degenerate (ND) regime. We find that the inclusion of the full nuclear contribution enhances the neutrino pair production by $nn$ and $pp$ bremsstrahlung by a factor of about two in both the D and ND limits when compared with previous calculations. This result may be relevant for the physical conditions of interest in the semitransparent regions near the neutrinosphere in type II supernovae, cooling of neutron stars and other astrophysical situations.
112 - Takuma Suda , Raphael Hirschi , 2011
We investigate the quantitative constraint on the triple-alpha reaction rate based on stellar evolution theory, motivated by the recent significant revision of the rate proposed by nuclear physics calculations. Targeted stellar models were computed i n order to investigate the impact of that rate in the mass range of 0.8 < M / Msun < 25 and in the metallicity range between Z = 0 and Z = 0.02. The revised rate has a significant impact on the evolution of low- and intermediate-mass stars, while its influence on the evolution of massive stars (M >~ 10 Msun) is minimal. We find that employing the revised rate suppresses helium shell flashes on AGB phase for stars in the initial mass range 0.8 < M / Msun < 6, which is contradictory to what is observed. The absence of helium shell flashes is due to the weak temperature dependence of the revised triple-alpha reaction cross section at the temperature involved. In our models, it is suggested that the temperature dependence of the cross section should have at least nu > 10 at T = 1 - 1.2 x 10^8 K where the cross section is proportional to T^{nu}. We also derive the helium ignition curve to estimate the maximum cross section to retain the low-mass first red giants. The semi-analytically derived ignition curves suggest that the reaction rate should be less than ~ 10^{-29} cm^6 s^{-1} mole^{-2} at ~ 10^{7.8} K, which corresponds to about three orders of magnitude larger than that of the NACRE compilation. In an effort to compromise with the revised rates, we calculate and analyze models with enhanced CNO cycle reaction rates to increase the maximum luminosity of the first giant branch. However, it is impossible to reach the typical RGB tip luminosity even if all the reaction rates related to CNO cycles are enhanced by more than ten orders of magnitude.
169 - A.I. Chugunov 2009
We analyze the effect of plasma screening on nuclear reaction rates in dense matter composed of atomic nuclei of one or two types. We perform semiclassical calculations of the Coulomb barrier penetrability taking into account a radial mean field pote ntial of plasma ions. The mean field potential is extracted from the results of extensive Monte Carlo calculations of radial pair distribution functions of ions in binary ionic mixtures. We calculate the reaction rates in a wide range of plasma parameters and approximate these rates by an analytical expression that is expected to be applicable for multicomponent ions mixtures. Also, we analyze Gamow-peak energies of reacting ions in various nuclear burning regimes. For illustration, we study nuclear burning in C-O mixtures.
232 - Romeel Dave 2011
We examine the growth of the stellar content of galaxies from z=3-0 in cosmological hydrodynamic simulations incorporating parameterised galactic outflows. Without outflows, galaxies overproduce stellar masses (M*) and star formation rates (SFRs) com pared to observations. Winds introduce a three-tier form for the galaxy stellar mass and star formation rate functions, where the middle tier depends on differential (i.e. mass-dependent) recycling of ejected wind material back into galaxies. A tight M*-SFR relation is a generic outcome of all these simulations, and its evolution is well-described as being powered by cold accretion, although current observations at z>2 suggest that star formation in small early galaxies must be highly suppressed. Roughly one-third of z=0 galaxies at masses below M^* are satellites, and star formation in satellites is not much burstier than in centrals. All models fail to suppress star formation and stellar mass growth in massive galaxies at z<2, indicating the need for an external quenching mechanism such as black hole feedback. All models also fail to produce dwarfs as young and rapidly star-forming as observed. An outflow model following scalings expected for momentum-driven winds broadly matches observed galaxy evolution around M^* from z=0-3, which is a significant success since these galaxies dominate cosmic star formation, but the failures at higher and lower masses highlight the challenges still faced by this class of models. We argue that central star-forming galaxies are well-described as living in a slowly-evolving equilibrium between inflows from gravity and recycled winds, star formation, and strong and ubiquitous outflows that regulate how much inflow forms into stars. Star-forming galaxy evolution is thus primarily governed by the continual cycling of baryons between galaxies and intergalactic gas.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا