ﻻ يوجد ملخص باللغة العربية
Glass-like objects such as windows, bottles, and mirrors exist widely in the real world. Sensing these objects has many applications, including robot navigation and grasping. However, this task is very challenging due to the arbitrary scenes behind glass-like objects. This paper aims to solve the glass-like object segmentation problem via enhanced boundary learning. In particular, we first propose a novel refined differential module for generating finer boundary cues. Then an edge-aware point-based graph convolution network module is proposed to model the global shape representation along the boundary. Both modules are lightweight and effective, which can be embedded into various segmentation models. Moreover, we use these two modules to design a decoder to get accurate segmentation results, especially on the boundary. Extensive experiments on three recent glass-like object segmentation datasets, including Trans10k, MSD, and GDD, show that our approach establishes new state-of-the-art performances. We also offer the generality and superiority of our approach compared with recent methods on three general segmentation datasets, including Cityscapes, BDD, and COCO Stuff. Code and models will be available at (url{https://github.com/hehao13/EBLNet})
We present Boundary IoU (Intersection-over-Union), a new segmentation evaluation measure focused on boundary quality. We perform an extensive analysis across different error types and object sizes and show that Boundary IoU is significantly more sens
As a natural way for human-computer interaction, fixation provides a promising solution for interactive image segmentation. In this paper, we focus on Personal Fixations-based Object Segmentation (PFOS) to address issues in previous studies, such as
Although deep convolutional neural networks(CNNs) have achieved remarkable results on object detection and segmentation, pre- and post-processing steps such as region proposals and non-maximum suppression(NMS), have been required. These steps result
Semi-supervised video object segmentation is a task of segmenting the target object in a video sequence given only a mask annotation in the first frame. The limited information available makes it an extremely challenging task. Most previous best-perf
We propose a new method for video object segmentation (VOS) that addresses object pattern learning from unlabeled videos, unlike most existing methods which rely heavily on extensive annotated data. We introduce a unified unsupervised/weakly supervis