ﻻ يوجد ملخص باللغة العربية
The characterization of intermittency in turbulence has its roots in the K62 theory, and if no proper definition is to be found in the literature, statistical properties of intermittency were studied and models were developed in attempt to reproduce it. The first contribution of this work is to propose a requirement list to be satisfied by models designed within the Lagrangian framework. Multifractal stochastic processes are a natural choice to retrieve multifractal properties of the dissipation. Among them, following the proposition of cite{Mandelbrot1968}, we investigate the Gaussian Multiplicative Chaos formalism, which requires the construction of a log-correlated stochastic process $X_t$. The fractional Gaussian noise of Hurst parameter $H = 0$ is of great interest because it leads to a log-correlation for the logarithm of the process.Inspired by the approximation of fractional Brownian motion by an infinite weighted sum of correlated Ornstein-Uhlenbeck processes, our second contribution is to propose a new stochastic model: $X_t = int_0^infty Y_t^x k(x) d x$, where $Y_t^x$ is an Ornstein-Uhlenbeck process with speed of mean reversion $x$ and $k$ is a kernel. A regularization of $k(x)$ is required to ensure stationarity, finite variance and logarithmic auto-correlation. A variety of regularizations are conceivable, and we show that they lead to the aforementioned multifractal models.To simulate the process, we eventually design a new approach relying on a limited number of modes for approximating the integral through a quadrature $X_t^N = sum_{i=1}^N omega_i Y_t^{x_i}$, using a conventional quadrature method. This method can retrieve the expected behavior with only one mode per decade, making this strategy versatile and computationally attractive for simulating such processes, while remaining within the proposed framework for a proper description of intermittency.
The physical processes leading to anomalous fluctuations in turbulent flows, referred to as intermittency, are still challenging. Here, we use an approach based on instanton theory for the velocity increment dynamics through scales. Cascade trajector
We develop a stochastic model for Lagrangian velocity as it is observed in experimental and numerical fully developed turbulent flows. We define it as the unique statistically stationary solution of a causal dynamics, given by a stochastic differenti
The Lagrangian (LA) and Eulerian Acceleration (EA) properties of fluid particles in homogeneous turbulence with uniform shear and uniform stable stratification are studied using direct numerical simulations. The Richardson number is varied from $Ri=0
Common modal decomposition techniques for flowfield analysis, data-driven modeling and flow control, such as proper orthogonal decomposition (POD) and dynamic mode decomposition (DMD) are usually performed in an Eulerian (fixed) frame of reference wi
A phenomenological theory of the fluctuations of velocity occurring in a fully developed homogeneous and isotropic turbulent flow is presented. The focus is made on the fluctuations of the spatial (Eulerian) and temporal (Lagrangian) velocity increme