ﻻ يوجد ملخص باللغة العربية
When they are damaged or injured, soft biological tissues are able to self-repair and heal. Mechanics is critical during the healing process, as the damaged extracellular matrix (ECM) tends to be replaced with a new undamaged ECM supporting homeostatic stresses. Computational modeling has been commonly used to simulate the healing process. However, there is a pressing need to have a unified thermodynamics theory for healing. From the viewpoint of continuum damage mechanics, some key parameters related to healing processes, for instance, the volume fraction of newly grown soft tissue and the growth deformation, can be regarded as internal variables and have related evolution equations. This paper is aiming to establish this unified framework inspired by thermodynamics for continuum damage models for the healing of soft biological tissues. The significant advantage of the proposed model is that no textit{ad hoc} equations are required for describing the healing process. Therefore, this new model is more concise and offers a universal approach to simulate the healing process. Three numerical examples are provided to demonstrate the effectiveness of the proposed model, which is in good agreement with the existing works, including an application for balloon angioplasty in an arteriosclerotic artery with a fiber cap.
Healing of soft biological tissue is the process of self-recovering or self-repairing the injured or damaged extracellular matrix (ECM). Healing is assumed to be stress-driven, with the objective of returning to a homeostatic stress metrics in the ti
We propose a model which can be jointly calibrated to the corporate bond term structure and equity option volatility surface of the same company. Our purpose is to obtain explicit bond and equity option pricing formulas that can be calibrated to find
A to-date unsolved and highly limiting safety concern for Ultra High-Field (UHF) magnetic resonance imaging (MRI) is the deposition of radiofrequency (RF) power in the body, quantified by the specific absorption rate (SAR), leading to dangerous tissu
The human heart is enclosed in the pericardial cavity. The pericardium consists of a layered thin sac and is separated from the myocardium by a thin film of fluid. It provides a fixture in space and frictionless sliding of the myocardium. The influen
Despite the great promise of the physics-informed neural networks (PINNs) in solving forward and inverse problems, several technical challenges are present as roadblocks for more complex and realistic applications. First, most existing PINNs are base