ﻻ يوجد ملخص باللغة العربية
The determination of the ground state of quantum many-body systems via digital quantum computers rests upon the initialization of a sufficiently educated guess. This requirement becomes more stringent the greater the system. Preparing physically-motivated ans{a}tze on quantum hardware is therefore important to achieve quantum advantage in the simulation of correlated electrons. In this spirit, we introduce the Gutzwiller Wave Function (GWF) within the context of the digital quantum simulation of the Fermi-Hubbard model. We present a quantum routine to initialize the GWF that comprises two parts. In the first, the noninteracting state associated with the $U = 0$ limit of the model is prepared. In the second, the non-unitary Gutzwiller projection that selectively removes states with doubly-occupied sites from the wave function is performed by adding to every lattice site an ancilla qubit, the measurement of which in the $|0rangle$ state confirms the projection was made. Due to its non-deterministic nature, we estimate the success rate of the algorithm in generating the GWF as a function of the lattice size and the interaction strength $U/t$. The scaling of the quantum circuit metrics and its integration in general quantum simulation algorithms are also discussed.
For variational algorithms on the near term quantum computing hardware, it is highly desirable to use very accurate ansatze with low implementation cost. Recent studies have shown that the antisymmetrized geminal power (AGP) wavefunction can be an ex
We present an algorithm that extends existing quantum algorithms for simulating fermion systems in quantum chemistry and condensed matter physics to include bosons in general and phonons in particular. We introduce a qubit representation for the low-
The ferromagnetic state of an Ising chain can represent a two-fold degenerate subspace or equivalently a logical qubit which is protected from excitations by an energy gap. We study a a braiding-like exchange operation through the movement of the sta
We develop a workflow to use current quantum computing hardware for solving quantum many-body problems, using the example of the fermionic Hubbard model. Concretely, we study a four-site Hubbard ring that exhibits a transition from a product state to
Domains are homogeneous areas of discrete symmetry, created in nonequilibrium phase transitions. They are separated by domain walls, topological objects which prevent them from fusing together. Domains may reconfigure by thermally-driven microscopic