ترغب بنشر مسار تعليمي؟ اضغط هنا

Transformer Tracking

109   0   0.0 ( 0 )
 نشر من قبل Xin Chen
 تاريخ النشر 2021
  مجال البحث الهندسة المعلوماتية
والبحث باللغة English




اسأل ChatGPT حول البحث

Correlation acts as a critical role in the tracking field, especially in recent popular Siamese-based trackers. The correlation operation is a simple fusion manner to consider the similarity between the template and the search region. However, the correlation operation itself is a local linear matching process, leading to lose semantic information and fall into local optimum easily, which may be the bottleneck of designing high-accuracy tracking algorithms. Is there any better feature fusion method than correlation? To address this issue, inspired by Transformer, this work presents a novel attention-based feature fusion network, which effectively combines the template and search region features solely using attention. Specifically, the proposed method includes an ego-context augment module based on self-attention and a cross-feature augment module based on cross-attention. Finally, we present a Transformer tracking (named TransT) method based on the Siamese-like feature extraction backbone, the designed attention-based fusion mechanism, and the classification and regression head. Experiments show that our TransT achieves very promising results on six challenging datasets, especially on large-scale LaSOT, TrackingNet, and GOT-10k benchmarks. Our tracker runs at approximatively 50 fps on GPU. Code and models are available at https://github.com/chenxin-dlut/TransT.

قيم البحث

اقرأ أيضاً

Template-based discriminative trackers are currently the dominant tracking methods due to their robustness and accuracy, and the Siamese-network-based methods that depend on cross-correlation operation between features extracted from template and sea rch images show the state-of-the-art tracking performance. However, general cross-correlation operation can only obtain relationship between local patches in two feature maps. In this paper, we propose a novel tracker network based on a powerful attention mechanism called Transformer encoder-decoder architecture to gain global and rich contextual interdependencies. In this new architecture, features of the template image is processed by a self-attention module in the encoder part to learn strong context information, which is then sent to the decoder part to compute cross-attention with the search image features processed by another self-attention module. In addition, we design the classification and regression heads using the output of Transformer to localize target based on shape-agnostic anchor. We extensively evaluate our tracker TrTr, on VOT2018, VOT2019, OTB-100, UAV, NfS, TrackingNet, and LaSOT benchmarks and our method performs favorably against state-of-the-art algorithms. Training code and pretrained models are available at https://github.com/tongtybj/TrTr.
286 - Peize Sun , Jinkun Cao , Yi Jiang 2020
In this work, we propose TransTrack, a simple but efficient scheme to solve the multiple object tracking problems. TransTrack leverages the transformer architecture, which is an attention-based query-key mechanism. It applies object features from the previous frame as a query of the current frame and introduces a set of learned object queries to enable detecting new-coming objects. It builds up a novel joint-detection-and-tracking paradigm by accomplishing object detection and object association in a single shot, simplifying complicated multi-step settings in tracking-by-detection methods. On MOT17 and MOT20 benchmark, TransTrack achieves 74.5% and 64.5% MOTA, respectively, competitive to the state-of-the-art methods. We expect TransTrack to provide a novel perspective for multiple object tracking. The code is available at: url{https://github.com/PeizeSun/TransTrack}.
Most existing Siamese-based tracking methods execute the classification and regression of the target object based on the similarity maps. However, they either employ a single map from the last convolutional layer which degrades the localization accur acy in complex scenarios or separately use multiple maps for decision making, introducing intractable computations for aerial mobile platforms. Thus, in this work, we propose an efficient and effective hierarchical feature transformer (HiFT) for aerial tracking. Hierarchical similarity maps generated by multi-level convolutional layers are fed into the feature transformer to achieve the interactive fusion of spatial (shallow layers) and semantics cues (deep layers). Consequently, not only the global contextual information can be raised, facilitating the target search, but also our end-to-end architecture with the transformer can efficiently learn the interdependencies among multi-level features, thereby discovering a tracking-tailored feature space with strong discriminability. Comprehensive evaluations on four aerial benchmarks have proven the effectiveness of HiFT. Real-world tests on the aerial platform have strongly validated its practicability with a real-time speed. Our code is available at https://github.com/vision4robotics/HiFT.
In this paper, we present a new tracking architecture with an encoder-decoder transformer as the key component. The encoder models the global spatio-temporal feature dependencies between target objects and search regions, while the decoder learns a q uery embedding to predict the spatial positions of the target objects. Our method casts object tracking as a direct bounding box prediction problem, without using any proposals or predefined anchors. With the encoder-decoder transformer, the prediction of objects just uses a simple fully-convolutional network, which estimates the corners of objects directly. The whole method is end-to-end, does not need any postprocessing steps such as cosine window and bounding box smoothing, thus largely simplifying existing tracking pipelines. The proposed tracker achieves state-of-the-art performance on five challenging short-term and long-term benchmarks, while running at real-time speed, being 6x faster than Siam R-CNN. Code and models are open-sourced at https://github.com/researchmm/Stark.
The key challenge in multiple-object tracking task is temporal modeling of the object under track. Existing tracking-by-detection methods adopt simple heuristics, such as spatial or appearance similarity. Such methods, in spite of their commonality, are overly simple and lack the ability to learn temporal variations from data in an end-to-end manner. In this paper, we present MOTR, a fully end-to-end multiple-object tracking framework. It learns to model the long-range temporal variation of the objects. It performs temporal association implicitly and avoids previous explicit heuristics. Built upon DETR, MOTR introduces the concept of track query. Each track query models the entire track of an object. It is transferred and updated frame-by-frame to perform iterative predictions in a seamless manner. Tracklet-aware label assignment is proposed for one-to-one assignment between track queries and object tracks. Temporal aggregation network together with collective average loss is further proposed to enhance the long-range temporal relation. Experimental results show that MOTR achieves competitive performance and can serve as a strong Transformer-based baseline for future research. Code is available at url{https://github.com/megvii-model/MOTR}.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا