ترغب بنشر مسار تعليمي؟ اضغط هنا

Distributionally Robust Trajectory Optimization Under Uncertain Dynamics via Relative-Entropy Trust Regions

76   0   0.0 ( 0 )
 نشر من قبل Hany Abdulsamad
 تاريخ النشر 2021
والبحث باللغة English




اسأل ChatGPT حول البحث

Trajectory optimization and model predictive control are essential techniques underpinning advanced robotic applications, ranging from autonomous driving to full-body humanoid control. State-of-the-art algorithms have focused on data-driven approaches that infer the system dynamics online and incorporate posterior uncertainty during planning and control. Despite their success, such approaches are still susceptible to catastrophic errors that may arise due to statistical learning biases, unmodeled disturbances or even directed adversarial attacks. In this paper, we tackle the problem of dynamics mismatch and propose a distributionally robust optimal control formulation that alternates between two relative-entropy trust region optimization problems. Our method finds the worst-case maximum-entropy Gaussian posterior over the dynamics parameters and the corresponding robust optimal policy. We show that our approach admits a closed-form backward-pass for a certain class of systems and demonstrate the resulting robustness on linear and nonlinear numerical examples.


قيم البحث

اقرأ أيضاً

In this paper, we consider the problem of controlling a partially observed Markov decision process (POMDP) in order to actively estimate its state trajectory over a fixed horizon with minimal uncertainty. We pose a novel active smoothing problem in w hich the objective is to directly minimise the smoother entropy, that is, the conditional entropy of the (joint) state trajectory distribution of concern in fixed-interval Bayesian smoothing. Our formulation contrasts with prior active approaches that minimise the sum of conditional entropies of the (marginal) state estimates provided by Bayesian filters. By establishing a novel form of the smoother entropy in terms of the POMDP belief (or information) state, we show that our active smoothing problem can be reformulated as a (fully observed) Markov decision process with a value function that is concave in the belief state. The concavity of the value function is of particular importance since it enables the approximate solution of our active smoothing problem using piecewise-linear function approximations in conjunction with standard POMDP solvers. We illustrate the approximate solution of our active smoothing problem in simulation and compare its performance to alternative approaches based on minimising marginal state estimate uncertainties.
287 - Luke Drnach , Ye Zhao 2020
Trajectory optimization with contact-rich behaviors has recently gained attention for generating diverse locomotion behaviors without pre-specified ground contact sequences. However, these approaches rely on precise models of robot dynamics and the t errain and are susceptible to uncertainty. Recent works have attempted to handle uncertainties in the system model, but few have investigated uncertainty in contact dynamics. In this study, we model uncertainty stemming from the terrain and design corresponding risk-sensitive objectives under the framework of contact-implicit trajectory optimization. In particular, we parameterize uncertainties from the terrain contact distance and friction coefficients using probability distributions and propose a corresponding expected residual minimization cost design approach. We evaluate our method in three simple robotic examples, including a legged hopping robot, and we benchmark one of our examples in simulation against a robust worst-case solution. We show that our risk-sensitive method produces contact-averse trajectories that are robust to terrain perturbations. Moreover, we demonstrate that the resulting trajectories converge to those generated by a traditional, non-robust method as the terrain model becomes more certain. Our study marks an important step towards a fully robust, contact-implicit approach suitable for deploying robots on real-world terrain.
The need for robust control laws is especially important in safety-critical applications. We propose robust hybrid control barrier functions as a means to synthesize control laws that ensure robust safety. Based on this notion, we formulate an optimi zation problem for learning robust hybrid control barrier functions from data. We identify sufficient conditions on the data such that feasibility of the optimization problem ensures correctness of the learned robust hybrid control barrier functions. Our techniques allow us to safely expand the region of attraction of a compass gait walker that is subject to model uncertainty.
180 - Henry Lam , Fengpei Li 2019
We consider optimization problems with uncertain constraints that need to be satisfied probabilistically. When data are available, a common method to obtain feasible solutions for such problems is to impose sampled constraints, following the so-calle d scenario optimization approach. However, when the data size is small, the sampled constraints may not statistically support a feasibility guarantee on the obtained solution. This paper studies how to leverage parametric information and the power of Monte Carlo simulation to obtain feasible solutions for small-data situations. Our approach makes use of a distributionally robust optimization (DRO) formulation that translates the data size requirement into a Monte Carlo sample size requirement drawn from what we call a generating distribution. We show that, while the optimal choice of this generating distribution is the one eliciting the data or the baseline distribution in a nonparametric divergence-based DRO, it is not necessarily so in the parametric case. Correspondingly, we develop procedures to obtain generating distributions that improve upon these basic choices. We support our findings with several numerical examples.
We propose a new framework to solve online optimization and learning problems in unknown and uncertain dynamical environments. This framework enables us to simultaneously learn the uncertain dynamical environment while making online decisions in a qu antifiably robust manner. The main technical approach relies on the theory of distributional robust optimization that leverages adaptive probabilistic ambiguity sets. However, as defined, the ambiguity set usually leads to online intractable problems, and the first part of our work is directed to find reformulations in the form of online convex problems for two sub-classes of objective functions. To solve the resulting problems in the proposed framework, we further introduce an online version of the Nesterov accelerated-gradient algorithm. We determine how the proposed solution system achieves a probabilistic regret bound under certain conditions. Two applications illustrate the applicability of the proposed framework.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا