ﻻ يوجد ملخص باللغة العربية
In this paper we prove new connections between two frameworks for analysis and control of nonlinear systems: the Koopman operator framework and contraction analysis. Each method, in different ways, provides exact and global analyses of nonlinear systems by way of linear systems theory. The main results of this paper show equivalence between contraction and Koopman approaches for a wide class of stability analysis and control design problems. In particular: stability or stablizability in the Koopman framework implies the existence of a contraction metric (resp. control contraction metric) for the nonlinear system. Further in certain cases the converse holds: contraction implies the existence of a set of observables with which stability can be verified via the Koopman framework. We provide results for the cases of autonomous and time-varying systems, as well as orbital stability of limit cycles. Furthermore, the converse claims are based on a novel relation between the Koopman method and construction of a Kazantzis-Kravaris-Luenberger observer. We also provide a byproduct of the main results, that is, a new method to learn contraction metrics from trajectory data via linear system identification.
Methods for constructing causal linear models from nonlinear dynamical systems through lifting linearization underpinned by Koopman operator and physical system modeling theory are presented. Outputs of a nonlinear control system, called observables,
The Koopman operator allows for handling nonlinear systems through a (globally) linear representation. In general, the operator is infinite-dimensional - necessitating finite approximations - for which there is no overarching framework. Although ther
In this paper, we present a virtual control contraction metric (VCCM) based nonlinear parameter-varying (NPV) approach to design a state-feedback controller for a control moment gyroscope (CMG) to track a user-defined trajectory set. This VCCM based
This paper demonstrates that the acceleration/deceleration limits in ACC systems can make a string stable ACC amplify the speed perturbation in natural driving. It is shown that the constrained acceleration/deceleration of the following ACCs are like
In this paper we propose a novel method to establish stability and, in addition, convergence to a consensus state for a class of discrete-time Multi-Agent System (MAS) evolving according to nonlinear heterogeneous local interaction rules which is not