ترغب بنشر مسار تعليمي؟ اضغط هنا

Scheduling of Wireless Edge Networks for Feedback-Based Interactive Applications

183   0   0.0 ( 0 )
 نشر من قبل Samuele Zoppi
 تاريخ النشر 2021
  مجال البحث الهندسة المعلوماتية
والبحث باللغة English




اسأل ChatGPT حول البحث

Interactive applications with automated feedback will largely influence the design of future networked infrastructures. In such applications, status information about an environment of interest is captured and forwarded to a compute node, which analyzes the information and generates a feedback message. Timely processing and forwarding must ensure the feedback information to be still applicable; thus, the quality-of-service parameter for such applications is the end-to-end latency over the entire loop. By modelling the communication of a feedback loop as a two-hop network, we address the problem of allocating network resources in order to minimize the delay violation probability (DVP), i.e. the probability of the end-to-end latency exceeding a target value. We investigate the influence of the network queue states along the network path on the performance of semi-static and dynamic scheduling policies. The former determine the schedule prior to the transmission of the packet, while the latter benefit from feedback on the queue states as time evolves and reallocate time slots depending on the queues evolution. The performance of the proposed policies is evaluated for variations in several system parameters and comparison baselines. Results show that the proposed semi-static policy achieves close-to-optimal DVP and the dynamic policy outperforms the state-of-the-art algorithms.



قيم البحث

اقرأ أيضاً

Unlike theoretical distributed learning (DL), DL over wireless edge networks faces the inherent dynamics/uncertainty of wireless connections and edge nodes, making DL less efficient or even inapplicable under the highly dynamic wireless edge networks (e.g., using mmW interfaces). This article addresses these problems by leveraging recent advances in coded computing and the deep dueling neural network architecture. By introducing coded structures/redundancy, a distributed learning task can be completed without waiting for straggling nodes. Unlike conventional coded computing that only optimizes the code structure, coded distributed learning over the wireless edge also requires to optimize the selection/scheduling of wireless edge nodes with heterogeneous connections, computing capability, and straggling effects. However, even neglecting the aforementioned dynamics/uncertainty, the resulting joint optimization of coding and scheduling to minimize the distributed learning time turns out to be NP-hard. To tackle this and to account for the dynamics and uncertainty of wireless connections and edge nodes, we reformulate the problem as a Markov Decision Process and then design a novel deep reinforcement learning algorithm that employs the deep dueling neural network architecture to find the jointly optimal coding scheme and the best set of edge nodes for different learning tasks without explicit information about the wireless environment and edge nodes straggling parameters. Simulations show that the proposed framework reduces the average learning delay in wireless edge computing up to 66% compared with other DL approaches. The jointly optimal framework in this article is also applicable to any distributed learning scheme with heterogeneous and uncertain computing nodes.
The integration of Mobile Edge Computing (MEC) and Wireless Power Transfer (WPT), which is usually referred to as Wireless Powered Mobile Edge Computing (WP-MEC), has been recognized as a promising technique to enhance the lifetime and computation ca pacity of wireless devices (WDs). Compared to the conventional battery-powered MEC networks, WP-MEC brings new challenges to the computation scheduling problem because we have to jointly optimize the resource allocation in WPT and computation offloading. In this paper, we consider the energy minimization problem for WP-MEC networks with multiple WDs and multiple access points. We design an online algorithm by transforming the original problem into a series of deterministic optimization problems based on the Lyapunov optimization theory. To reduce the time complexity of our algorithm, the optimization problem is relaxed and decomposed into several independent subproblems. After solving each subproblem, we adjust the computed values of variables to obtain a feasible solution. Extensive simulations are conducted to validate the performance of the proposed algorithm.
150 - Feng Xia , Longhua Ma , Chen Peng 2008
There is a trend towards using wireless technologies in networked control systems. However, the adverse properties of the radio channels make it difficult to design and implement control systems in wireless environments. To attack the uncertainty in available communication resources in wireless control systems closed over WLAN, a cross-layer adaptive feedback scheduling (CLAFS) scheme is developed, which takes advantage of the co-design of control and wireless communications. By exploiting cross-layer design, CLAFS adjusts the sampling periods of control systems at the application layer based on information about deadline miss ratio and transmission rate from the physical layer. Within the framework of feedback scheduling, the control performance is maximized through controlling the deadline miss ratio. Key design parameters of the feedback scheduler are adapted to dynamic changes in the channel condition. An event-driven invocation mechanism for the feedback scheduler is also developed. Simulation results show that the proposed approach is efficient in dealing with channel capacity variations and noise interference, thus providing an enabling technology for control over WLAN.
With traditional open-loop scheduling of network resources, the quality-of-control (QoC) of networked control systems (NCSs) may degrade significantly in the presence of limited bandwidth and variable workload. The goal of this work is to maximize th e overall QoC of NCSs through dynamically allocating available network bandwidth. Based on codesign of control and scheduling, an integrated feedback scheduler is developed to enable flexible QoC management in dynamic environments. It encompasses a cascaded feedback scheduling module for sampling period adjustment and a direct feedback scheduling module for priority modification. The inherent characteristics of priority-driven control networks make it feasible to implement the proposed feedback scheduler in real-world systems. Extensive simulations show that the proposed approach leads to significant QoC improvement over the traditional open-loop scheduling scheme under both underloaded and overloaded network conditions.
Future IoT networks consist of heterogeneous types of IoT devices (with various communication types and energy constraints) which are assumed to belong to an IoT service provider (ISP). To power backscattering-based and wireless-powered devices, the ISP has to contract with an energy service provider (ESP). This article studies the strategic interactions between the ISP and its ESP and their implications on the joint optimal time scheduling and energy trading for heterogeneous devices. To that end, we propose an economic framework using the Stackelberg game to maximize the network throughput and energy efficiency of both the ISP and ESP. Specifically, the ISP leads the game by sending its optimal service time and energy price request (that maximizes its profit) to the ESP. The ESP then optimizes and supplies the transmission power which satisfies the ISPs request (while maximizing ESPs utility). To obtain the Stackelberg equilibrium (SE), we apply a backward induction technique which first derives a closed-form solution for the ESP. Then, to tackle the non-convex optimization problem for the ISP, we leverage the block coordinate descent and convex-concave procedure techniques to design two partitioning schemes (i.e., partial adjustment (PA) and joint adjustment (JA)) to find the optimal energy price and service time that constitute local SEs. Numerical results reveal that by jointly optimizing the energy trading and the time allocation for heterogeneous IoT devices, one can achieve significant improvements in terms of the ISPs profit compared with those of conventional transmission methods. Different tradeoffs between the ESPs and ISPs profits and complexities of the PA/JA schemes can also be numerically tuned. Simulations also show that the obtained local SEs approach the socially optimal welfare when the ISPs benefit per transmitted bit is higher than a given threshold.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا