ترغب بنشر مسار تعليمي؟ اضغط هنا

Graphene in 2D/3D Heterostructure Diodes for High Performance Electronics and Optoelectronics

175   0   0.0 ( 0 )
 نشر من قبل Max C. Lemme
 تاريخ النشر 2021
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Diodes made of heterostructures of the 2D material graphene and conventional 3D materials are reviewed in this manuscript. Several applications in high frequency electronics and optoelectronics are highlighted. In particular, advantages of metal-insulator-graphene (MIG) diodes over conventional metal-insulator-metal diodes are discussed with respect to relevant figures-of-merit. The MIG concept is extended to 1D diodes. Several experimentally implemented radio frequency circuit applications with MIG diodes as active elements are presented. Furthermore, graphene-silicon Schottky diodes as well as MIG diodes are reviewed in terms of their potential for photodetection. Here, graphene-based diodes have the potential to outperform conventional photodetectors in several key figures-of-merit, such as overall responsivity or dark current levels. Obviously, advantages in some areas may come at the cost of disadvantages in others, so that 2D/3D diodes need to be tailored in application-specific ways.

قيم البحث

اقرأ أيضاً

Vertical metal-insulator-graphene (MIG) diodes for radio frequency (RF) power detection are realized using a scalable approach based on graphene grown by chemical vapor deposition and TiO2 as barrier material. The temperature dependent current flow t hrough the diode can be described by thermionic emission theory taking into account a bias induced barrier lowering at the graphene TiO2 interface. The diodes show excellent figures of merit for static operation, including high on-current density of up to 28 A/cm^2, high asymmetry of up to 520, strong maximum nonlinearity of up to 15, and large maximum responsivity of up to 26 V^{-1}, outperforming state-of-the-art metal-insulator-metal and MIG diodes. RF power detection based on MIG diodes is demonstrated, showing a responsivity of 2.8 V/W at 2.4 GHz and 1.1 V/W at 49.4 GHz.
This work reports flexible fully transparent high-voltage diodes that feature high rectification ratio (Rr 10 8) and high breakdown voltage (Vb 150 V) simultaneously, combined with their applications as building blocks of energy management systems in wearable electronics where triboelectric nanogenerators (TENGs) are used as power source. Both experimental results and technology computer aided design (TCAD) simulations suggest that Rr and Vb can be modulated by the offset length in an opposite tendency. The low reverse leakage current (fA/MICRON) guarantees an ultra-low power consumption in standby mode, which is a core issue in wearable device applications. Besides the unprecedented electrical performance, the diodes exhibit good mechanical robustness with minimal degradation throughout the strain and fatigue tests. By incorporating these high-voltage diodes into half-wave and full-wave rectifier circuits, the high alternating current (AC) output voltage of TENGs is successfully rectified into direct current (DC) voltage and charged into supercapacitors (SCs), indicating their high integration and compatibility with TENGs, and thus their promising applications in various wearable electronic systems.
Perovskite-based optoelectronic devices have gained significant attention due to their remarkable performance and low processing cost, particularly for solar cells. However, for perovskite light-emitting diodes (LEDs), non-radiative charge carrier re combination has limited electroluminescence (EL) efficiency. Here we demonstrate perovskite-polymer bulk heterostructure LEDs exhibiting record-high external quantum efficiencies (EQEs) exceeding 20%, and an EL half-life of 46 hours under continuous operation. This performance is achieved with an emissive layer comprising quasi-2D and 3D perovskites and an insulating polymer. Transient optical spectroscopy reveals that photogenerated excitations at the quasi-2D perovskite component migrate to lower-energy sites within 1 ps. The dominant component of the photoluminescence (PL) is primarily bimolecular and is characteristic of the 3D regions. From PL quantum efficiency and transient kinetics of the emissive layer with/without charge-transport contacts, we find non-radiative recombination pathways to be effectively eliminated. Light outcoupling from planar LEDs, as used in OLED displays, generally limits EQE to 20-30%, and we model our reported EL efficiency of over 20% in the forward direction to indicate the internal quantum efficiency (IQE) to be close to 100%. Together with the low drive voltages needed to achieve useful photon fluxes (2-3 V for 0.1-1 mA/cm2), these results establish that perovskite-based LEDs have significant potential for light-emission applications.
One-dimensional (1D) materials have attracted significant research interest due to their unique quantum confinement effects and edge-related properties. Atomically thin 1D nanoribbon is particularly interesting because it is a valuable platform with physical limits of both thickness and width. Here, we develop a catalyst-free growth method and achieves the growth of Bi2O2Se nanostructures with tunable dimensionality. Significantly, Bi2O2Se nanoribbons with thickness down to 0.65 nm, corresponding to monolayer, are successfully grown for the first time. Electrical and optoelectronic measurements show that Bi2O2Se nanoribbons possess decent performance in terms of mobility, on/off ratio, and photoresponsivity, suggesting their promising for devices. This work not only reports a new method for the growth of atomically thin nanoribbons but also provides a platform to study properties and applications of such nanoribbon materials at thickness limit.
85 - Lu Yin 2020
The rise of flexible electronics calls for cost-effective and scalable batteries with good mechanical and electrochemical performance. In this work, we developed printable, polymer-based AgO-Zn batteries that feature flexibility, rechargeability, hig h areal capacity, and low impedance. Using elastomeric substrate and binders, the current collectors, electrodes, and separators can be easily screen-printed layer-by-layer and vacuum-sealed in a stacked configuration. The batteries are customizable in sizes and capacities, with the highest obtained areal capacity of 54 mAh/cm2 for primary applications. Advanced micro-CT and EIS were used to characterize the battery, whose mechanical stability was tested with repeated twisting and bending. The batteries were used to power a flexible E-ink display system that requires a high-current drain and exhibited superior performance than commercial coin-cell batteries. The developed battery presents a practical solution for powering a wide range of electronics and holds major implications for the future development of practical and high-performance flexible batteries.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا