ﻻ يوجد ملخص باللغة العربية
We prove a splitting formula that reconstructs the logarithmic Gromov- Witten invariants of simple normal crossing varieties from the punctured Gromov- Witten invariants of their irreducible components, under the assumption of the gluing strata being toric varieties. The formula is based on the punctured Gromov-Witten theory developed in arXiv:2009.07720.
We propose a conjectural explicit formula of generating series of a new type for Gromov--Witten invariants of $mathbb{P}^1$ of all degrees in full genera.
We prove the equivariant Gromov-Witten theory of a nonsingular toric 3-fold X with primary insertions is equivalent to the equivariant Donaldson-Thomas theory of X. As a corollary, the topological vertex calculations by Agangic, Klemm, Marino, and Va
We show that it is possible to define the contribution of degree one covers of a disk to open Gromov-Witten invariants. We build explicit sections of obstruction bundles in order to extend the algebro-geometric techniques of Pandharipande to the case of domains with boundary.
The purpose of this note is to share some observations and speculations concerning the asymptotic behavior of Gromov-Witten invariants. They may be indicative of some deep phenomena in symplectic topology that in full generality are outside of the re
We construct a sheaf of Fock spaces over the moduli space of elliptic curves E_y with Gamma_1(3)-level structure, arising from geometric quantization of H^1(E_y), and a global section of this Fock sheaf. The global section coincides, near appropriate