ﻻ يوجد ملخص باللغة العربية
We show that the inclusion of a recently found additional term of the spin polarization vector at local equilibrium which is linear in the symmetrized gradients of the velocity field, and the assumption of hadron production at constant temperature restore the quantitative agreement between hydrodynamic model predictions and local polarization measurements in relativistic heavy ion collisions at $sqrt s_{NN}= 200$ GeV. The longitudinal component of the spin polarization vector turns out to be very sensitive to the temperature value, with a good fit around 155 MeV. The implications of this finding are discussed.
Based on a generalized side-jump formalism for massless chiral fermions, which naturally takes into account the spin-orbit coupling in the scattering of two chiral fermions and the chiral vortical effect in a rotating chiral fermion matter, we have d
We review studies of vortical motion and the resulting global polarization of $Lambda$ and $bar{Lambda}$ hyperons in heavy-ion collisions, in particular, within 3FD model. 3FD predictions for the global midrapidity polarization in the FAIR-NICA energ
We have studied local spin polarization in the relativistic hydrodynamic model. Generalizing the Wigner functions previously obtained from chiral kinetic theory in Ref.[1] to the massive case, we present the possible contributions up to the order of
We study the local equilibrium in the central $V = 125$ fm$^3$ cell in heavy-ion collisions at energies from 10.7 AGeV (AGS) to 160 AGeV (SPS) calculated in the microscopic transport model. In the present paper the hadron yields and energy spectra in
We study charm production in ultra-relativistic heavy-ion collisions by using the Parton-Hadron-String Dynamics (PHSD) transport approach. The initial charm quarks are produced by the PYTHIA event generator tuned to fit the transverse momentum spectr