ﻻ يوجد ملخص باللغة العربية
The cosmological constant if considered as a fundamental constant, provides an information treatment for gravitation problems, both cosmological and of black holes. The efficiency of that approach is shown via gedanken experiments for the information behavior of the horizons for Schwarzschild-de Sitter and Kerr-de Sitter metrics. A notion of entropy regarding any observer and in all possible non-extreme black hole solutions is suggested, linked also to Bekenstein bound. The suggested information approach forbids the existence of naked singularities.
We consider gedanken experiments to destroy an extremal or near-extremal BTZ black hole by throwing matter into the horizon. These black holes are vacuum solutions to (2+1)-dimensional gravity theories, and are asymptotically $mathrm{AdS}_3$. Provide
Sorce and Wald proposed a new version of gedanken experiments to examine the weak cosmic censorship conjecture (WCCC) in Kerr-Newmann black holes. However, their discussion only includes the second-order approximation of perturbation and there exists
A scalar field non-minimally coupled to certain geometric [or matter] invariants which are sourced by [electro]vacuum black holes (BHs) may spontaneously grow around the latter, due to a tachyonic instability. This process is expected to lead to a ne
A stationary and spherically symmetric black hole (For example, Reissner-Nordstrom black hole or Kerr-Newman black hole) has at most one singularity and two horizons. One horizon is the outer event horizon and the other is the inner Cauchy horizon. C
In the framework of the new version of the gedanken experiments proposed by Sorce and Wald, we investigate the weak cosmic censorship conjecture (WCCC) for an Einstein-Maxwell-Dilaton-Axion (EMDA) black hole. Our result shows that no violations of WC