ترغب بنشر مسار تعليمي؟ اضغط هنا

Unsupervised Document Embedding via Contrastive Augmentation

126   0   0.0 ( 0 )
 نشر من قبل Dongsheng Luo
 تاريخ النشر 2021
  مجال البحث الهندسة المعلوماتية
والبحث باللغة English




اسأل ChatGPT حول البحث

We present a contrasting learning approach with data augmentation techniques to learn document representations in an unsupervised manner. Inspired by recent contrastive self-supervised learning algorithms used for image and NLP pretraining, we hypothesize that high-quality document embedding should be invariant to diverse paraphrases that preserve the semantics of the original document. With different backbones and contrastive learning frameworks, our study reveals the enormous benefits of contrastive augmentation for document representation learning with two additional insights: 1) including data augmentation in a contrastive way can substantially improve the embedding quality in unsupervised document representation learning, and 2) in general, stochastic augmentations generated by simple word-level manipulation work much better than sentence-level and document-level ones. We plug our method into a classifier and compare it with a broad range of baseline methods on six benchmark datasets. Our method can decrease the classification error rate by up to 6.4% over the SOTA approaches on the document classification task, matching or even surpassing fully-supervised methods.

قيم البحث

اقرأ أيضاً

We propose a new model for unsupervised document embedding. Leading existing approaches either require complex inference or use recurrent neural networks (RNN) that are difficult to parallelize. We take a different route and develop a convolutional n eural network (CNN) embedding model. Our CNN architecture is fully parallelizable resulting in over 10x speedup in inference time over RNN models. Parallelizable architecture enables to train deeper models where each successive layer has increasingly larger receptive field and models longer range semantic structure within the document. We additionally propose a fully unsupervised learning algorithm to train this model based on stochastic forward prediction. Empirical results on two public benchmarks show that our approach produces comparable to state-of-the-art accuracy at a fraction of computational cost.
Contrastive learning has been gradually applied to learn high-quality unsupervised sentence embedding. Among the previous un-supervised methods, the latest state-of-the-art method, as far as we know, is unsupervised SimCSE (unsup-SimCSE). Unsup-SimCS E uses the InfoNCE1loss function in the training stage by pulling semantically similar sentences together and pushing apart dis-similar ones.Theoretically, we expect to use larger batches in unsup-SimCSE to get more adequate comparisons among samples and avoid overfitting. However, increasing the batch size does not always lead to improvements, but instead even lead to performance degradation when the batch size exceeds a threshold. Through statistical observation, we find that this is probably due to the introduction of low-confidence negative pairs after in-creasing the batch size. To alleviate this problem, we introduce a simple smoothing strategy upon the InfoNCE loss function, termedGaussian Smoothing InfoNCE (GS-InfoNCE).Specifically, we add random Gaussian noise vectors as negative samples, which act asa smoothing of the negative sample space.Though being simple, the proposed smooth-ing strategy brings substantial improvements to unsup-SimCSE. We evaluate GS-InfoNCEon the standard semantic text similarity (STS)task. GS-InfoNCE outperforms the state-of-the-art unsup-SimCSE by an average Spear-man correlation of 1.38%, 0.72%, 1.17% and0.28% on the base of BERT-base, BERT-large,RoBERTa-base and RoBERTa-large, respectively.
Dialogue generation models face the challenge of producing generic and repetitive responses. Unlike previous augmentation methods that mostly focus on token manipulation and ignore the essential variety within a single sample using hard labels, we pr opose to promote the generation diversity of the neural dialogue models via soft embedding augmentation along with soft labels in this paper. Particularly, we select some key input tokens and fuse their embeddings together with embeddings from their semantic-neighbor tokens. The new embeddings serve as the input of the model to replace the original one. Besides, soft labels are used in loss calculation, resulting in multi-target supervision for a given input. Our experimental results on two datasets illustrate that our proposed method is capable of generating more diverse responses than raw models while remains a similar n-gram accuracy that ensures the quality of generated responses.
We introduce EfficientCL, a memory-efficient continual pretraining method that applies contrastive learning with novel data augmentation and curriculum learning. For data augmentation, we stack two types of operation sequentially: cutoff and PCA jitt ering. While pretraining steps proceed, we apply curriculum learning by incrementing the augmentation degree for each difficulty step. After data augmentation is finished, contrastive learning is applied on projected embeddings of original and augmented examples. When finetuned on GLUE benchmark, our model outperforms baseline models, especially for sentence-level tasks. Additionally, this improvement is capable with only 70% of computational memory compared to the baseline model.
Multi-document question generation focuses on generating a question that covers the common aspect of multiple documents. Such a model is useful in generating clarifying options. However, a naive model trained only using the targeted (positive) docume nt set may generate too generic questions that cover a larger scope than delineated by the document set. To address this challenge, we introduce the contrastive learning strategy where given positive and negative sets of documents, we generate a question that is closely related to the positive set but is far away from the negative set. This setting allows generated questions to be more specific and related to the target document set. To generate such specific questions, we propose Multi-Source Coordinated Question Generator (MSCQG), a novel framework that includes a supervised learning (SL) stage and a reinforcement learning (RL) stage. In the SL stage, a single-document question generator is trained. In the RL stage, a coordinator model is trained to find optimal attention weights to align multiple single-document generators, by optimizing a reward designed to promote specificity of generated questions. We also develop an effective auxiliary objective, named Set-induced Contrastive Regularization (SCR) that improves the coordinators contrastive learning during the RL stage. We show that our model significantly outperforms several strong baselines, as measured by automatic metrics and human evaluation. The source repository is publicly available at url{www.github.com/woonsangcho/contrast_qgen}.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا