ترغب بنشر مسار تعليمي؟ اضغط هنا

Dual Mode Operation of a Hydromagnetic Plasma Thruster to Achieve Tunable Thrust and Specific Impulse

89   0   0.0 ( 0 )
 نشر من قبل Mark Cappelli
 تاريخ النشر 2021
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We report here on initial studies of a pulsed hydromagnetic plasma gun that can operate in either a pre-filled or a gas-puff mode on demand. These modes enable agile and responsive performance through tunable thrust and specific impulse. Operation with a molecular nitrogen propellant is demonstrated to show that the hydromagnetic thruster is a candidate technology for air-harvesting and drag compensation in very low Earth orbit. Dual mode operation is achieved by leveraging propellant gas dynamics to change the fill fraction and flow collisionality within the thruster. This results in the formation of distinct modes that are characterized by the current-driven hydromagnetic waves that they allow, namely a magneto-deflagration and magneto-detonation respectively. These modes can be chosen by changing the time propellant is allowed to diffuse into the thruster based on the desired performance. Using time-of-flight emission diagnostics to characterize near-field flow velocities, we find that a relatively dramatic transition occurs between modes, with exhaust velocities ranging from 10 km/s to 55 km/s in deflagration and detonation regimes, respectively. Simulations of the processed mass bit offers a first glimpse into possible thruster performance confirming a broad range and tradeoff between specific impulse (2600 - 5600 sec) and thrust (up to 31 mN) when operating in a burst mode.



قيم البحث

اقرأ أيضاً

A two-fluid flowing plasma model is applied to describe the plasma rotation and resulted instability evolution in magnetically enhanced vacuum arc thruster (MEVAT). Typical experimental parameters are employed, including plasma density, equilibrium m agnetic field, ion and electron temperatures, cathode materials, axial streaming velocity, and azimuthal rotation frequency. It is found that the growth rate of plasma instability increases with growing rotation frequency and field strength, and with descending electron temperature and atomic weight, for which the underlying physics are explained. The radial structure of density fluctuation is compared with that of equilibrium density gradient, and the radial locations of their peak magnitudes are very close, showing an evidence of resistive drift mode driven by density gradient. Temporal evolution of perturbed mass flow in the cross section of plasma column is also presented, which behaves in form of clockwise rotation (direction of electron diamagnetic drift) at edge and anti-clockwise rotation (direction of ion diamagnetic drift) in the core, separated by a mode transition layer from $n=0$ to $n=1$. This work, to our best knowledge, is the first treatment of plasma instability caused by rotation and axial flow in MEVAT, and is also of great practical interest for other electric thrusters where rotating plasma is concerned for long-time stable operation and propulsion efficiency optimization.
Along with crossed electric and magnetic fields in a Hall thruster, a radial component of electric field is generated that takes ions toward the walls, which causes sputtering and produces dust contamination in the thruster plasma. Considering negati vely charged dust particles in the Hall thruster, we approach analytically the resistive instability by taking into account the oscillations of dust particles, ions and electrons along with finite temperatures of ions and electrons. In typical Hall thruster regimes, the resistive instability growth rate increases with higher collision rates in the plasma, stronger magnetic field but it decreases with higher mass of the dust and higher temperature of the ions and electrons. In comparison with dust-free models, the presence of dust results into a drop of the resistive instability growth rate by three orders of magnitude, but the growth rate increases slowly for dust densities within the typical range.
A tunable plasma-based energy dechirper has been developed at FLASHForward to remove the correlated energy spread of a 681~MeV electron bunch. Through the interaction of the bunch with wakefields excited in plasma the projected energy spread was redu ced from a FWHM of 1.31$%$ to 0.33$%$ without reducing the stability of the incoming beam. The experimental results for variable plasma density are in good agreement with analytic predictions and three-dimensional simulations. The proof-of-principle dechirping strength of $1.8$~GeV/mm/m significantly exceeds those demonstrated for competing state-of-the-art techniques and may be key to future plasma wakefield-based free-electron lasers and high energy physics facilities, where large intrinsic chirps need to be removed.
In a typical fusion experiment, the plasma can have several possible confinement modes. At the TCV tokamak, aside from the Low (L) and High (H) confinement modes, an additional mode, dithering (D), is frequently observed. Developing methods that auto matically detect these modes is considered to be important for future tokamak operation. Previous work with deep learning methods, particularly convolutional recurrent neural networks (Conv-RNNs), indicates that they are a suitable approach. Nevertheless, those models are sensitive to noise in the temporal alignment of labels, and that model in particular is limited to making individual decisions taking into account only its own hidden state and its input at each time step. In this work, we propose an architecture for a sequence-to-sequence neural network model with attention which solves both of those issues. Using a carefully calibrated dataset, we compare the performance of a Conv-RNN with that of our proposed sequence-to-sequence model, and show two results: one, that the Conv-RNN can be improved upon with new data; two, that the sequence-to-sequence model can improve the results even further, achieving excellent scores on both train and test data.
We have developed an optical lattice clock that can operate in dual modes: a strontium (Sr) clock mode and an ytterbium (Yb) clock mode. Dual-mode operation of the Sr-Yb optical lattice clock is achieved by alternately cooling and trapping $^{87}$Sr and $^{171}$Yb atoms inside the vacuum chamber of the clock. Optical lattices for Sr and Yb atoms were arranged with horizontal and vertical configurations, respectively, resulting in a small distance of the order of 100 $mu$m between the trapped Sr and Yb atoms. The $^{1}$S$_{0}$-$^{3}$P$_{0}$ clock transitions in the trapped atoms were interrogated in turn and the clock lasers were stabilized to the transitions. We demonstrated the frequency ratio measurement of the Sr and Yb clock transitions by using the dual-mode operation of the Sr-Yb optical lattice clock. The dual-mode operation can reduce the uncertainty of the blackbody radiation shift in the frequency ratio measurement, because both Sr and Yb atoms share the same blackbody radiation.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا