ترغب بنشر مسار تعليمي؟ اضغط هنا

Numerical Study of Stellar Core Collapse and Neutrino Emission Using the Nuclear Equation of State Obtained by the Variational Method

353   0   0.0 ( 0 )
 نشر من قبل Ken'ichiro Nakazato
 تاريخ النشر 2021
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Core-collapse simulations of massive stars are performed using the equation of state (EOS) based on the microscopic variational calculation with realistic nuclear forces. The progenitor models with the initial masses of $15M_odot$, $9.6M_odot$, and $30M_odot$ are adopted as examples of the ordinary core-collapse supernova with a shock stall, the low-mass supernova with a successful explosion, and the black hole formation, respectively. Moreover, the neutrinos emitted from the stellar collapse are assessed. Then, the variational EOS is confirmed to work well in all cases. The EOS dependences of the dynamics, thermal structure, and neutrino emission of the stellar collapse are also investigated.

قيم البحث

اقرأ أيضاً

Based on our recent three-dimensional core-collapse supernova (CCSN) simulations including both exploding and non-exploding models, we study the detailed neutrino signals in representative terrestrial neutrino observatories, Super-Kamiokande (Hyper-K amiokande), DUNE, JUNO, and IceCube. We find that the physical origin of difference in the neutrino signals between 1D and 3D is mainly proto-neutron-star (PNS) convection. We study the temporal and angular variations of the neutrino signals and discuss the detectability of the time variations driven by the spiral Standing Accretion Shock Instability (spiral SASI) when it emerges for non-exploding models. In addition, we determine that there can be a large angular asymmetry in the event rate ($gtrsim 50 %$), but that the time-integrated signal has a relatively modest asymmetry ($lesssim 20 %$). Both features are associated with the lepton-number emission self-sustained asymmetry (LESA) and the spiral SASI. Moreover, our analysis suggests that there is an interesting correlation between the total neutrino energy (TONE) and the cumulative number of neutrino events in each detector, a correlation that can facilitate data analyses of real observations. We demonstrate the retrieval of neutrino energy spectra for all flavors of neutrino by applying a novel spectrum reconstruction technique to the data from multiple detectors. We find that this new method is capable of estimating the TONE within the error of $sim$20% if the distance to the CCSN is $lesssim 6$ kpc.
We study the impact of neutrino-pair production from the de-excitation of highly excited heavy nuclei on core-collapse supernova simulations, following the evolution up to several 100 ms after core bounce. Our study is based on the AGILE-Boltztran su pernova code, which features general relativistic radiation hydrodynamics and accurate three-flavor Boltzmann neutrino transport in spherical symmetry. In our simulations the nuclear de-excitation process is described in two different ways. At first we follow the approach proposed by Fuller and Meyer [Astrophys. J. 376,701 (1991)], which is based on strength functions derived in the framework of the nuclear Fermi-gas model of non-interacting nucleons. Secondly, we parametrize the allowed and forbidden strength distributions in accordance with measurements for selected nuclear ground states. We determine the de-excitation strength by applying the Brink hypothesis and detailed balance. For both approaches, we find that nuclear de-excitation has no effect on the supernova dynamics. However, we find that nuclear de-excitation is the leading source for the production of electron antineutrinos as well as heavy-lepton flavor (anti)neutrinos during the collapse phase. At sufficiently high densities, the associated neutrino spectra are influenced by interactions with the surrounding matter, making proper simulations of neutrino transport important for the determination of the neutrino-energy loss rate. We find that even including nuclear de-excitations, the energy loss during the collapse phase is overwhelmingly dominated by electron neutrinos produced by electron captures.
97 - H. Shen , H. Toki , K. Oyamatsu 2011
We construct the equation of state (EOS) of dense matter covering a wide range of temperature, proton fraction, and density for the use of core-collapse supernova simulations. The study is based on the relativistic mean-field (RMF) theory, which can provide an excellent description of nuclear matter and finite nuclei. The Thomas--Fermi approximation in combination with assumed nucleon distribution functions and a free energy minimization is adopted to describe the non-uniform matter, which is composed of a lattice of heavy nuclei. We treat the uniform matter and non-uniform matter consistently using the same RMF theory. We present two sets of EOS tables, namely EOS2 and EOS3. EOS2 is an update of our earlier work published in 1998 (EOS1), where only the nucleon degree of freedom is taken into account. EOS3 includes additional contributions from $Lambda$ hyperons. The effect of $Lambda$ hyperons on the EOS is negligible in the low-temperature and low-density region, whereas it tends to soften the EOS at high density. In comparison with EOS1, EOS2 and EOS3 have an improved design of ranges and grids, which covers the temperature range $T=0.1$--$10^{2.6}$ MeV with the logarithmic grid spacing $Delta log_{10}(T/rm{[MeV]})=0.04$ (92 points including T=0), the proton fraction range $Y_p=0$--0.65 with the linear grid spacing $Delta Y_p = 0.01$ (66 points), and the density range $rho_B=10^{5.1}$--$10^{16},rm{g,cm^{-3}}$ with the logarithmic grid spacing $Delta log_{10}(rho_B/rm{[g,cm^{-3}]}) = 0.1$ (110 points).
Uncertainties in our knowledge of the properties of dense matter near and above nuclear saturation density are among the main sources of variations in multi-messenger signatures predicted for core-collapse supernovae (CCSNe) and the properties of neu tron stars (NSs). We construct 97 new finite-temperature equations of state (EOSs) of dense matter that obey current experimental, observational, and theoretical constraints and discuss how systematic variations in the EOS parameters affect the properties of cold nonrotating NSs and the core collapse of a $20,M_odot$ progenitor star. The core collapse of the $20,M_odot$ progenitor star is simulated in spherical symmetry using the general-relativistic radiation-hydrodynamics code GR1D where neutrino interactions are computed for each EOS using the NuLib library. We conclude that the effective mass of nucleons at densities above nuclear saturation density is the largest source of uncertainty in the CCSN neutrino signal and dynamics even though it plays a subdominant role in most properties of cold NS matter. Meanwhile, changes in other observables affect the properties of cold NSs, while having little effect in CCSNe. To strengthen our conclusions, we perform six octant three-dimensional CCSN simulations varying the effective mass of nucleons at nuclear saturation density. We conclude that neutrino heating and, thus, the likelihood of explosion is significantly increased for EOSs where the effective mass of nucleons at nuclear saturation density is large.
154 - K. Sumiyoshi 2012
Massive stars (M> 10Msun) end their lives with spectacular explosions due to gravitational collapse. The collapse turns the stars into compact objects such as neutron stars and black holes with the ejection of cosmic rays and heavy elements. Despite the importance of these astrophysical events, the mechanism of supernova explosions has been an unsolved issue in astrophysics. This is because clarification of the supernova dynamics requires the full knowledge of nuclear and neutrino physics at extreme conditions, and large-scale numerical simulations of neutrino radiation hydrodynamics in multi-dimensions. This article is a brief overview of the understanding (with difficulty) of the supernova mechanism through the recent advance of numerical modeling at supercomputing facilities. Numerical studies with the progress of nuclear physics are applied to follow the evolution of compact objects with neutrino emissions in order to reveal the birth of pulsars/black holes from the massive stars.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا