ﻻ يوجد ملخص باللغة العربية
Macroscopic equations arising out of stochastic particle systems in detailed balance (called dissipative systems or gradient flows) have a natural variational structure, which can be derived from the large-deviation rate functional for the density of the particle system. While large deviations can be studied in considerable generality, these variational structures are often restricted to systems in detailed balance. Using insights from macroscopic fluctuation theory, in this work we aim to generalise this variational connection beyond dissipative systems by augmenting densities with fluxes, which encode non-dissipative effects. Our main contribution is an abstract framework, which for a given flux-density cost and a quasipotential, provides a decomposition into dissipative and non-dissipative components and a generalised orthogonality relation between them. We then apply this abstract theory to various stochastic particle systems -- independent copies of jump processes, zero-range processes, chemical-reaction networks in complex balance and lattice-gas models.
Stationary non-equilibrium states describe steady flows through macroscopic systems. Although they represent the simplest generalization of equilibrium states, they exhibit a variety of new phenomena. Within a statistical mechanics approach, these st
The Macroscopic Fluctuation Theory is an effective framework to describe transports and their fluctuations in classical out-of-equilibrium diffusive systems. Whether the Macroscopic Fluctuation Theory may be extended to the quantum realm and which fo
Higgs fields on gauge-natural prolongations of principal bundles are defined by invariant variational problems and related canonical conservation laws along the kernel of a gauge-natural Jacobi morphism.
In this paper, we revise Maxwells constitutive relation and formulate a system of first-order partial differential equations with two parameters for compressible viscoelastic fluid flows. The system is shown to possess a nice conservation-dissipation
Fluctuation geometry was recently proposed as a counterpart approach of Riemannian geometry of inference theory. This theory describes the geometric features of the statistical manifold $mathcal{M}$ of random events that are described by a family of