ﻻ يوجد ملخص باللغة العربية
Accelerators magnets must have minimal magnetic field imperfections for reducing particle-beam instabilities. In the case of coils made of high-temperature superconducting (HTS) tapes, the field imperfections from persistent currents need to be carefully evaluated. In this paper we study the use of superconducting screens based on HTS tapes for reducing the magnetic field imperfections in accelerator magnets. The screens exploit the magnetization by persistent currents to cancel out the magnetic field error. The screens are aligned with the main field components, such that only the undesired field components are compensated. The screens are passive, self-regulating, and do not require any external source of energy. Measurements in liquid nitrogen at 77 Kelvin show for dipole-field configurations a significant reduction of the magnetic-field error up to a factor of four. The residual error is explained via numerical simulations, accounting for the geometrical imperfections in the HTS screens, thus achieving satisfactory agreement with experimental results. Simulations show that if screens are increased in width and thickness, and operated at 4.5 Kelvin, field errors may be eliminated almost entirely for the typical excitation cycles of accelerator magnets.
Modern ion accelerators and ion implantation systems need very short, highly versatile, Low Energy Beam Transport (LEBT) systems. The need for reliable and continuous operation requires LEBT designs to be simple and robust. The energy efficiency of a
The superconducting solenoid magnet prototype for ADS injection-I had been fabricated in Beijing Qihuan Mechanical and Electric Engineer Company and tested in Haerbin Institute of Technology (HIT) in Nov, 2012. Batch magnet production was processed a
This paper describes simulation analyses on beam and laser (X-ray)-driven accelerations in effective nanotube models obtained from Vsim and EPOCH codes. Experimental setups to detect wakefields are also outlined with accelerator facilities at Fermila
Early tests of short low group velocity and standing wave structures indicated the viability of operating X-band linacs with accelerating gradients in excess of 100 MeV/m. Conventional scaling of traveling wave traveling wave linacs with frequency sc
The use of nonlinear lattices with large betatron tune spreads can increase instability and space charge thresholds due to improved Landau damping. Unfortunately, the majority of nonlinear accelerator lattices turn out to be nonintegrable, producing