ترغب بنشر مسار تعليمي؟ اضغط هنا

Leaning Compact and Representative Features for Cross-Modality Person Re-Identification

122   0   0.0 ( 0 )
 نشر من قبل Guangwei Gao
 تاريخ النشر 2021
  مجال البحث الهندسة المعلوماتية
والبحث باللغة English




اسأل ChatGPT حول البحث

This paper pays close attention to the cross-modality visible-infrared person re-identification (VI Re-ID) task, which aims to match human samples between visible and infrared modes. In order to reduce the discrepancy between features of different modalities, most existing works usually use constraints based on Euclidean metric. Since the Euclidean based distance metric cannot effectively measure the internal angles between the embedded vectors, the above methods cannot learn the angularly discriminative feature embedding. Because the most important factor affecting the classification task based on embedding vector is whether there is an angularly discriminativ feature space, in this paper, we propose a new loss function called Enumerate Angular Triplet (EAT) loss. Also, motivated by the knowledge distillation, to narrow down the features between different modalities before feature embedding, we further present a new Cross-Modality Knowledge Distillation (CMKD) loss. The experimental results on RegDB and SYSU-MM01 datasets have shown that the proposed method is superior to the other most advanced methods in terms of impressive performance.



قيم البحث

اقرأ أيضاً

RGB-Infrared (IR) person re-identification is very challenging due to the large cross-modality variations between RGB and IR images. The key solution is to learn aligned features to the bridge RGB and IR modalities. However, due to the lack of corres pondence labels between every pair of RGB and IR images, most methods try to alleviate the variations with set-level alignment by reducing the distance between the entire RGB and IR sets. However, this set-level alignment may lead to misalignment of some instances, which limits the performance for RGB-IR Re-ID. Different from existing methods, in this paper, we propose to generate cross-modality paired-images and perform both global set-level and fine-grained instance-level alignments. Our proposed method enjoys several merits. First, our method can perform set-level alignment by disentangling modality-specific and modality-invariant features. Compared with conventional methods, ours can explicitly remove the modality-specific features and the modality variation can be better reduced. Second, given cross-modality unpaired-images of a person, our method can generate cross-modality paired images from exchanged images. With them, we can directly perform instance-level alignment by minimizing distances of every pair of images. Extensive experimental results on two standard benchmarks demonstrate that the proposed model favourably against state-of-the-art methods. Especially, on SYSU-MM01 dataset, our model can achieve a gain of 9.2% and 7.7% in terms of Rank-1 and mAP. Code is available at https://github.com/wangguanan/JSIA-ReID.
RGB-Infrared (IR) cross-modality person re-identification (re-ID), which aims to search an IR image in RGB gallery or vice versa, is a challenging task due to the large discrepancy between IR and RGB modalities. Existing methods address this challeng e typically by aligning feature distributions or image styles across modalities, whereas the very useful similarities among gallery samples of the same modality (i.e. intra-modality sample similarities) is largely neglected. This paper presents a novel similarity inference metric (SIM) that exploits the intra-modality sample similarities to circumvent the cross-modality discrepancy targeting optimal cross-modality image matching. SIM works by successive similarity graph reasoning and mutual nearest-neighbor reasoning that mine cross-modality sample similarities by leveraging intra-modality sample similarities from two different perspectives. Extensive experiments over two cross-modality re-ID datasets (SYSU-MM01 and RegDB) show that SIM achieves significant accuracy improvement but with little extra training as compared with the state-of-the-art.
Person Re-Identification (re-id) is a challenging task in computer vision, especially when there are limited training data from multiple camera views. In this paper, we pro- pose a deep learning based person re-identification method by transferring k nowledge of mid-level attribute features and high-level classification features. Building on the idea that identity classification, attribute recognition and re- identification share the same mid-level semantic representations, they can be trained sequentially by fine-tuning one based on another. In our framework, we train identity classification and attribute recognition tasks from deep Convolutional Neural Network (dCNN) to learn person information. The information can be transferred to the person re-id task and improves its accuracy by a large margin. Further- more, a Long Short Term Memory(LSTM) based Recurrent Neural Network (RNN) component is extended by a spacial gate. This component is used in the re-id model to pay attention to certain spacial parts in each recurrent unit. Experimental results show that our method achieves 78.3% of rank-1 recognition accuracy on the CUHK03 benchmark.
RGB-infrared person re-identification is a challenging task due to the intra-class variations and cross-modality discrepancy. Existing works mainly focus on learning modality-shared global representations by aligning image styles or feature distribut ions across modalities, while local feature from body part and relationships between person images are largely neglected. In this paper, we propose a Dual-level (i.e., local and global) Feature Fusion (DF^2) module by learning attention for discriminative feature from local to global manner. In particular, the attention for a local feature is determined locally, i.e., applying a learned transformation function on itself. Meanwhile, to further mining the relationships between global features from person images, we propose an Affinities Modeling (AM) module to obtain the optimal intra- and inter-modality image matching. Specifically, AM employes intra-class compactness and inter-class separability in the sample similarities as supervised information to model the affinities between intra- and inter-modality samples. Experimental results show that our proposed method outperforms state-of-the-arts by large margins on two widely used cross-modality re-ID datasets SYSU-MM01 and RegDB, respectively.
Person re-identification (ReID) has achieved significant improvement under the single-domain setting. However, directly exploiting a model to new domains is always faced with huge performance drop, and adapting the model to new domains without target -domain identity labels is still challenging. In this paper, we address cross-domain ReID and make contributions for both model generalization and adaptation. First, we propose Part Aligned Pooling (PAP) that brings significant improvement for cross-domain testing. Second, we design a Part Segmentation (PS) constraint over ReID feature to enhance alignment and improve model generalization. Finally, we show that applying our PS constraint to unlabeled target domain images serves as effective domain adaptation. We conduct extensive experiments between three large datasets, Market1501, CUHK03 and DukeMTMC-reID. Our model achieves state-of-the-art performance under both source-domain and cross-domain settings. For completeness, we also demonstrate the complementarity of our model to existing domain adaptation methods. The code is available at https://github.com/huanghoujing/EANet.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا