ترغب بنشر مسار تعليمي؟ اضغط هنا

Occurrence rate of radio-loud and halo CMEs in solar cycle 25: Prediction using their correlation with sunspot numbers

155   0   0.0 ( 0 )
 نشر من قبل Prakash O
 تاريخ النشر 2021
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

The coronal mass ejections (CMEs) from the Sun are known for their space weather and geomagnetic consequences. Among all CMEs, so-called radio-loud (RL) and halo CMEs are considered the most energetic in the sense that they are usually faster and wider than the general population of CMEs. Hence the study of RL and halo CMEs has become important and the prediction of their occurrence rate in a future cycle will give a warning in advance. In the present paper, the occurrence rates of RL and halo CMEs in solar cycle (SC) 25 are predicted. For this, we obtained good correlations between the numbers of RL and halo CMEs in each year and the yearly mean sunspot numbers in the previous two cycles. The predicted values of sunspot numbers in SC 25 by NOAA/NASA were considered as representative indices and the corresponding numbers of RL and halo CMEs have been determined using linear relations. Our results show that the maximum number of RL and halo CMEs will be around 39 $/pm$ 3 and 45 $/pm$ 4, respectively. Removing backside events, a set of front-side events was also considered separately and the front-side events alone in SC 25 are predicted again. The peak values of front-side RL and halo events have been estimated to be around 31 $/pm$ 3 and 29 $/pm$ 3 respectively. These results are discussed in comparison with the predicted values of sunspots by different authors.

قيم البحث

اقرأ أيضاً

108 - S.-S. Wu , G. Qin 2021
The prediction of solar activity is important for advanced technologies and space activities. The peak sunspot number (SSN), which can represent the solar activity, has declined continuously in the past four solar cycles (21$-$24), and the Sun would experience a Dalton-like minimum, or even the Maunder-like minimum, if the declining trend continues in the following several cycles, so that the predictions of solar activity for cycles 25 and 26 are crucial. In Qin & Wu, 2018, ApJ, we established an SSN prediction model denoted as two-parameter modified logistic prediction (TMLP) model, which can predict the variation of SSNs in a solar cycle if the start time of the cycle has been determined. In this work, we obtain a new model denoted as TMLP-extension (TMLP-E). If the start time of a cycle $n$ is already known, TMLP-E can predict the variation of SSNs in the cycle $n+1$. Cycle 25 is believed to start in December 2019, so that the predictions of cycles 25 and 26 can be made with our models. It is found that the predicted solar maximum, ascent time, and cycle length are 115.1, 4.84 yr, and 11.06 yr, respectively, for cycle 25, and 107.3, 4.80 yr, and 10.97 yr, respectively, for cycle 26. The solar activities of cycles 25 and 26 are predicted to be at the same level as that of cycle 24, but will not decrease further. We therefore suggest that the cycles 24$-$26 are at a minimum of Gleissberg cycle.
69 - Stefano Sello 2019
Solar activity forecasting is an important topic for numerous scientific and technological areas, such as space mission operations, electric power transmission lines, power transformation stations and earth geophysical and climatic impact. Neverthele ss, the well-known difficulty is how to accurately predict, on the basis of various recorded solar activity indices, the complete evolution of future solar cycles, due to highly complex dynamical and stochastic processes involved, mainly related to interaction of different components of internal magnetic fields. There are two main distinct classes of solar cycle prediction methods: the precursor-like ones and the mathematical-numerical ones. The main characteristic of precursor techniques, both purely solar and geomagnetic, is their physical basis. Conversely, the non-precursor methods use different mathematical and/or numerical properties of the known temporal evolution of solar activity indices to extract useful information for predicting future activity. For current solar cycle #24 we obtained fairly good statistical performances from both precursor and purely numerical methods, such as the so-called solar precursor and nonlinear ones. To further check the performances of these prediction techniques, we compared the early predictions for the next solar cycle #25. Preliminary results support some coherence of the prediction methods considered and confirm the current trend of a relatively low solar activity.
Solar activity cycle varies in amplitude. The last Cycle 24 is the weakest in the past century. Suns activity dominates Earths space environment. The frequency and intensity of the Suns activity are accordant with the solar cycle. Hence there are pra ctical needs to know the amplitude of the upcoming Cycle 25. The dynamo-based solar cycle predictions not only provide predictions, but also offer an effective way to evaluate our understanding of the solar cycle. In this article we apply the method of the first successful dynamo-based prediction developed for Cycle 24 to the prediction of Cycle 25, so that we can verify whether the previous success is repeatable. The prediction shows that Cycle 25 would be about 10% stronger than Cycle 24 with an amplitude of 126 (international sunspot number version 2.0). The result suggests that Cycle 25 will not enter the Maunder-like grand solar minimum as suggested by some publications. Solar behavior in about four to five years will give a verdict whether the prediction method captures the key mechanism for solar cycle variability, which is assumed as the polar field around the cycle minimum in the model.
Solar activity, in particular coronal mass ejections (CMEs), are often accompanied by bursts of radiation at metre wavelengths. Some of these bursts have a long duration and extend over a wide frequency band, namely, type IV radio bursts. However, th e association of type IV bursts with coronal mass ejections is still not well understood. In this article, we perform the first statistical study of type IV solar radio bursts in the solar cycle 24. Our study includes a total of 446 type IV radio bursts that occurred during this cycle. Our results show that a clear majority, $sim 81 %$ of type IV bursts, were accompanied by CMEs, based on a temporal association with white-light CME observations. However, we found that only $sim 2.2 %$ of the CMEs are accompanied by type IV radio bursts. We categorised the type IV bursts as moving or stationary based on their spectral characteristics and found that only $sim 18 %$ of the total type IV bursts in this study were moving type IV bursts. Our study suggests that type IV bursts can occur with both `Fast ($geq 500$ km/s) and `Slow ($< 500$ km/s), and also both `Wide ($geq 60^{circ}$) and `Narrow ($< 60^{circ}$) CMEs. However, the moving type IV bursts in our study were mostly associated with `Fast and `Wide CMEs ($sim 52 %$), similar to type II radio bursts. Contrary to type II bursts, stationary type IV bursts have a more uniform association with all CME types.
The Sun exhibits a well-observed modulation in the number of spots on its disk over a period of about 11 years. From the dawn of modern observational astronomy sunspots have presented a challenge to understanding -- their quasi-periodic variation in number, first noted 175 years ago, stimulates community-wide interest to this day. A large number of techniques are able to explain the temporal landmarks, (geometric) shape, and amplitude of sunspot cycles, however forecasting these features accurately in advance remains elusive. Recent observationally-motivated studies have illustrated a relationship between the Suns 22-year (Hale) magnetic cycle and the production of the sunspot cycle landmarks and patterns, but not the amplitude of the sunspot cycle. Using (discrete) Hilbert transforms on more than 270 years of (monthly) sunspot numbers we robustly identify the so-called termination events that mark the end of the previous 11-yr sunspot cycle, the enhancement/acceleration of the present cycle, and the end of 22-yr magnetic activity cycles. Using these we extract a relationship between the temporal spacing of terminators and the magnitude of sunspot cycles. Given this relationship and our prediction of a terminator event in 2020, we deduce that Sunspot Cycle 25 could have a magnitude that rivals the top few since records began. This outcome would be in stark contrast to the community consensus estimate of sunspot cycle 25 magnitude.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا