ﻻ يوجد ملخص باللغة العربية
We prepare twist-controlled resonant tunneling transistors consisting of monolayer (Gr) and Bernal bilayer (BGr) graphene electrodes separated by a thin layer of hexagonal boron nitride (hBN). The resonant conditions are achieved by closely aligning the crystallographic orientation of the graphene electrodes, which leads to momentum conservation for tunneling electrons at certain bias voltages. Under such conditions, negative differential conductance (NDC) can be achieved. Application of in-plane magnetic field leads to electrons acquiring additional momentum during the tunneling process, which allows control over the resonant conditions.
We investigate the band structure of twisted monolayer-bilayer graphene (tMBG), or twisted graphene on bilayer graphene (tGBG), as a function of twist angles and perpendicular electric fields in search of optimum conditions for achieving isolated nea
Twisted van der Waals (vdW) heterostructures have recently emerged as an attractive platform to study tunable correlated electron systems. However, the quantum mechanical nature of vdW heterostructures makes their theoretical and experimental explora
We describe the weak localization correction to conductivity in ultra-thin graphene films, taking into account disorder scattering and the influence of trigonal warping of the Fermi surface. A possible manifestation of the chiral nature of electrons
Using terahertz time-domain spectroscopy, the real part of optical conductivity [$sigma_{1}(omega)$] of twisted bilayer graphene was obtained at different temperatures (10 -- 300 K) in the frequency range 0.3 -- 3 THz. On top of a Drude-like response
Flatbands with extremely narrow bandwidths on the order of a few mili-electron volts can appear in twisted multilayer graphene systems for appropriate system parameters. Here we investigate the electronic structure of a twisted bi-bilayer graphene, o