ترغب بنشر مسار تعليمي؟ اضغط هنا

A Better Approach to Track the Evolution of Static Code Warnings

93   0   0.0 ( 0 )
 نشر من قبل Junjie Li
 تاريخ النشر 2021
  مجال البحث الهندسة المعلوماتية
والبحث باللغة English
 تأليف Junjie Li




اسأل ChatGPT حول البحث

Static bug detection tools help developers detect code problems. However, it is known that they remain underutilized due to various reasons. Recent advances to incorporate static bug detectors in modern software development workflows can better motivate developers to fix the reported warnings on the fly. In this paper, we study the effectiveness of the state-of-the-art (SOA) solution in tracking warnings by static bug detectors and propose a better solution based on our analysis of the insufficiencies of the SOA solution. In particular, we examined four large-scale open-source systems and crafted a data set of 3,452 static code warnings by two static bug detectors. We manually uncover the ground-truth evolution status of the selected warnings: persistent, resolved, or newly-introduced. Moreover, upon manual analysis, we identified the critical reasons behind the insufficiencies of the SOA matching algorithm. Finally, we propose a better approach to improve the tracking of static warnings over software development history. Our evaluation shows that our proposed approach provides a significant improvement in the precision of the tracking, i.e., from 66.9% to 90.0%.



قيم البحث

اقرأ أيضاً

We apply machine learning to version control data to measure the quantity of effort required to produce source code changes. We construct a model of a `standard coder trained from examples of code changes produced by actual software developers togeth er with the labor time they supplied. The effort of a code change is then defined as the labor hours supplied by the standard coder to produce that change. We therefore reduce heterogeneous, structured code changes to a scalar measure of effort derived from large quantities of empirical data on the coding behavior of software developers. The standard coder replaces traditional metrics, such as lines-of-code or function point analysis, and yields new insights into what code changes require more or less effort.
Many code changes that developers make in their projects are repeated and constitute recurrent change patterns. It is of interest to collect such patterns from the version history of open-source repositories and suggest the most useful of them as qui ck fixes. In this paper, we present Revizor - a tool aimed to build custom plugins for PyCharm, a popular Python IDE. A Revizor-based plugin can take change patterns and highlight potential places for their application in the developers code editor. If the developer accepts the quick fix, the plugin automatically performs the edit. Our approach uses a graph-based representation of code changes, which allows it to support complex distributed code patterns. Experienced developers have also rated the usability and the performance of such Revizor-based plugin positively. The source code of the tool and test plugin prototype are available on GitHub: https://github.com/JetBrains-Research/revizor. A demonstration video with a short tool description can be found on YouTube: https://youtu.be/5eLs14nco7E.
We explore the applicability of Graph Neural Networks in learning the nuances of source code from a security perspective. Specifically, whether signatures of vulnerabilities in source code can be learned from its graph representation, in terms of rel ationships between nodes and edges. We create a pipeline we call AI4VA, which first encodes a sample source code into a Code Property Graph. The extracted graph is then vectorized in a manner which preserves its semantic information. A Gated Graph Neural Network is then trained using several such graphs to automatically extract templates differentiating the graph of a vulnerable sample from a healthy one. Our model outperforms static analyzers, classic machine learning, as well as CNN and RNN-based deep learning models on two of the three datasets we experiment with. We thus show that a code-as-graph encoding is more meaningful for vulnerability detection than existing code-as-photo and linear sequence encoding approaches. (Submitted Oct 2019, Paper #28, ICST)
270 - Yao Wan , Yang He , Jian-Guo Zhang 2020
We present NaturalCC, an efficient and extensible toolkit to bridge the gap between natural language and programming language, and facilitate the research on big code analysis. Using NaturalCC, researchers both from natural language or programming la nguage communities can quickly and easily reproduce the state-of-the-art baselines and implement their approach. NaturalCC is built upon Fairseq and PyTorch, providing (1) an efficient computation with multi-GPU and mixed-precision data processing for fast model training, (2) a modular and extensible framework that makes it easy to reproduce or implement an approach for big code analysis, and (3) a command line interface and a graphical user interface to demonstrate each models performance. Currently, we have included several state-of-the-art baselines across different tasks (e.g., code completion, code comment generation, and code retrieval) for demonstration. The video of this demo is available at https://www.youtube.com/watch?v=q4W5VSI-u3E&t=25s.
Despite a decade of active research, there is a marked lack in clone detectors that scale to very large repositories of source code, in particular for detecting near-miss clones where significant editing activities may take place in the cloned code. We present SourcererCC, a token-based clone detector that targets three clone types, and exploits an index to achieve scalability to large inter-project repositories using a standard workstation. SourcererCC uses an optimized inverted-index to quickly query the potential clones of a given code block. Filtering heuristics based on token ordering are used to significantly reduce the size of the index, the number of code-block comparisons needed to detect the clones, as well as the number of required token-comparisons needed to judge a potential clone. We evaluate the scalability, execution time, recall and precision of SourcererCC, and compare it to four publicly available and state-of-the-art tools. To measure recall, we use two recent benchmarks, (1) a large benchmark of real clones, BigCloneBench, and (2) a Mutation/Injection-based framework of thousands of fine-grained artificial clones. We find SourcererCC has both high recall and precision, and is able to scale to a large inter-project repository (250MLOC) using a standard workstation.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا