ﻻ يوجد ملخص باللغة العربية
According to planetary interior models, some giant planets contain large metal masses with large metal-mass fractions. HD 149026b and TOI-849b are characteristic examples of these giant planets. It has been suggested that the envelope mass loss during giant impacts plays a key role in the formation of such giant planets. The aim of the present letter is to propose a mechanism that can explain the origin of such giant planets. We investigate the formation of giant planets in a rapidly dissipating disk using N-body simulations that consider pebble accretion. The results show that although the pebble isolation mass is smaller than the metal mass (> 30 Earth masses) in some giant planets, the interior metal mass can be increased by giant impacts between planets with the isolation mass. Regarding the metal fraction, the cores accrete massive envelopes by runaway gas accretion during the disk-dissipation phase of 1-10 Myr in a disk that evolves without photoevaporation. Although a large fraction of the envelope can be lost during giant impacts, the planets can reaccrete the envelope after impacts in a slowly dissipating disk. Here, we demonstrate that, by photoevaporation in a rapidly dissipating disk, the runaway gas accretion is quenched in the middle, resulting in the formation of giant planets with large metal-mass fractions. The origins of HD 149026b and TOI-849b, which are characterized by their large metal-mass fractions, can be naturally explained by a model that considers a disk evolving with photoevaporation.
The relationship between the compositions of giant planets and their host stars is of fundamental interest in understanding planet formation. The solar system giant planets are enhanced above solar composition in metals, both in their visible atmosph
We present an analysis of three years of precision radial velocity measurements of 160 metal-poor stars observed with HIRES on the Keck 1 telescope. We report on variability and long-term velocity trends for each star in our sample. We identify sever
Gas giants orbiting interior to the ice line are thought to have been displaced from their formation locations by processes that remain debated. Here we uncover several new metallicity trends, which together may indicate that two competing mechanisms
In the last few years, the so-called Nice model has got a significant importance in the study of the formation and evolution of the solar system. According to this model, the initial orbital configuration of the giant planets was much more compact th
We review the interior structure and evolution of Jupiter, Saturn, Uranus and Neptune, and giant exoplanets with particular emphasis on constraining their global composition. Compared to the first edition of this review, we provide a new discussion o