ﻻ يوجد ملخص باللغة العربية
Efficient methods for loading given classical data into quantum circuits are essential for various quantum algorithms. In this paper, we propose an algorithm called that can effectively load all the components of a given real-valued data vector into the amplitude of quantum state, while the previous proposal can only load the absolute values of those components. The key of our algorithm is to variationally train a shallow parameterized quantum circuit, using the results of two types of measurement; the standard computational-basis measurement plus the measurement in the Hadamard-transformed basis, introduced in order to handle the sign of the data components. The variational algorithm changes the circuit parameters so as to minimize the sum of two costs corresponding to those two measurement basis, both of which are given by the efficiently-computable maximum mean discrepancy. We also consider the problem of constructing the singular value decomposition entropy via the stock market dataset to give a financial market indicator; a quantum algorithm (the variational singular value decomposition algorithm) is known to produce a solution faster than classical, which yet requires the sign-dependent amplitude encoding. We demonstrate, with an in-depth numerical analysis, that our algorithm realizes loading of time-series of real stock prices on quantum state with small approximation error, and thereby it enables constructing an indicator of the financial market based on the stock prices.
Machine learning is seen as a promising application of quantum computation. For near-term noisy intermediate-scale quantum (NISQ) devices, parametrized quantum circuits (PQCs) have been proposed as machine learning models due to their robustness and
Recently, Bravyi, Gosset, and K{o}nig (Science, 2018) exhibited a search problem called the 2D Hidden Linear Function (2D HLF) problem that can be solved exactly by a constant-depth quantum circuit using bounded fan-in gates (or QNC^0 circuits), but
Parameterized quantum circuits (PQCs) have been broadly used as a hybrid quantum-classical machine learning scheme to accomplish generative tasks. However, whether PQCs have better expressive power than classical generative neural networks, such as r
Parameterized quantum circuits (PQCs), which are essential for variational quantum algorithms, have conventionally been optimized by parameterized rotational angles of single-qubit gates around predetermined set of axes. We propose a new method to op
The linear cross-entropy benchmark (Linear XEB) has been used as a test for procedures simulating quantum circuits. Given a quantum circuit $C$ with $n$ inputs and outputs and purported simulator whose output is distributed according to a distributio