ترغب بنشر مسار تعليمي؟ اضغط هنا

Equidistributions around special kinds of descents and excedances

108   0   0.0 ( 0 )
 نشر من قبل Jiang Zeng
 تاريخ النشر 2021
  مجال البحث
والبحث باللغة English




اسأل ChatGPT حول البحث

We consider a sequence of four variable polynomials by refining Stieltjes continued fraction for Eulerian polynomials. Using combinatorial theory of Jacobi-type continued fractions and bijections we derive various combinatorial interpretations in terms of permutation statistics for these polynomials, which include special kinds of descents and excedances in a recent paper of Baril and Kirgizov. As a by-product, we derive several equidistribution results for permutation statistics, which enables us to confirm and strengthen a recent conjecture of Vajnovszki and also to obtain several compagnion permutation statistics for two bistatistics in a conjecture of Baril and Kirgizov.



قيم البحث

اقرأ أيضاً

Recall that an excedance of a permutation $pi$ is any position $i$ such that $pi_i > i$. Inspired by the work of Hopkins, McConville and Propp (Elec. J. Comb., 2017) on sorting using toppling, we say that a permutation is toppleable if it gets sorted by a certain sequence of toppling moves. One of our main results is that the number of toppleable permutations on $n$ letters is the same as those for which excedances happen exactly at ${1,dots, lfloor (n-1)/2 rfloor}$. Additionally, we show that the above is also the number of acyclic orientations with unique sink (AUSOs) of the complete bipartite graph $K_{lceil n/2 rceil, lfloor n/2 rfloor + 1}$. We also give a formula for the number of AUSOs of complete multipartite graphs. We conclude with observations on an extremal question of Cameron et al. concerning maximizers of (the number of) acyclic orientations, given a prescribed number of vertices and edges for the graph.
209 - Joanna N. Chen 2017
Babson and Steingr{i}msson introduced generalized permutation patterns and showed that most of the Mahonian statistics in the literature can be expressed by the combination of generalized pattern functions. Particularly, they defined a new Mahonian s tatistic in terms of generalized pattern functions, which is denoted $stat$. Recently, Amini investigated the equidistributions of these Mahonian statistics over sets of pattern avoiding permutations. Moreover, he posed several conjectures. In this paper, we construct a bijection from $S_n(213)$ to $S_n(231)$, which maps the statistic $(maj,stat)$ to the statistic $(stat,maj)$. This allows us to give solutions to some of Aminis conjectures.
119 - Heesung Shin , Jiang Zeng 2014
We consider several generalizations of the classical $gamma$-positivity of Eulerian polynomials (and their derangement analogues) using generating functions and combinatorial theory of continued fractions. For the symmetric group, we prove an expansion formula for
72 - Bin Han , Jiang Zeng 2020
A systematic study of avoidance of mesh patterns of length 2 was conducted by Hilmarsson et al. in 2015. In a recent paper Kitaev and Zhang examined the distribution of the aforementioned patterns. The aim of this paper is to prove more equidistribut ions of mesh pattern and confirm Kitaev and Zhangs four conjectures by constructing two involutions on permutations.
We investigate the $alpha$-colored Eulerian polynomials and a notion of descents introduced in a recent paper of Hedmark and show that such polynomials can be computed as a polynomial encoding descents computed over a quotient of the wreath product $ mathbb{Z}_alphawrmathfrak{S}_n$. Moreover, we consider the flag descent statistic computed over this same quotient and find that the flag Eulerian polynomial remains palindromic. We prove that the flag descent polynomial is palindromic over this same quotient by giving a combinatorial proof that the flag descent statistic is symmetrically distributed over the collection of colored permutations with fixed last color by way of a new combinatorial tool, the colored winding number of a colored permutation. We conclude with some conjectures, observations, and open questions.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا