ﻻ يوجد ملخص باللغة العربية
We report the discovery of a circumstellar debris disk viewed nearly edge-on and associated with the young, K1 star BD+45$^{circ}$598 using high-contrast imaging at 2.2$mu$m obtained at the W.M.~Keck Observatory. We detect the disk in scattered light with a peak significance of $sim$5$sigma$ over three epochs, and our best-fit model of the disk is an almost edge-on $sim$70 AU ring, with inclination angle $sim$87$^circ$. Using the NOEMA interferometer at the Plateau de Bure Observatory operating at 1.3mm, we find resolved continuum emission aligned with the ring structure seen in the 2.2$mu$m images. We estimate a fractional infrared luminosity of $L_{IR}/L_{tot}$ $simeq6^{+2}_{-1}$$times$$10^{-4}$, higher than that of the debris disk around AU Mic. Several characteristics of BD+45$^{circ}$598, such as its galactic space motion, placement in a color-magnitude diagram, and strong presence of Lithium, are all consistent with its membership in the $beta$ Pictoris Moving Group with an age of 23$pm$3 Myr. However, the galactic position for BD+45$^{circ}$598 is slightly discrepant from previously-known members of the $beta$ Pictoris Moving Group, possibly indicating an extension of members of this moving group to distances of at least 70pc. BD+45$^{circ}$598 appears to be an example from a population of young circumstellar debris systems associated with newly identified members of young moving groups that can be imaged in scattered light, key objects for mapping out the early evolution of planetary systems from $sim$10-100 Myr. This target will also be ideal for northern-hemisphere, high-contrast imaging platforms to search for self-luminous, planetary mass companions residing in this system.
The Beta Pictoris Moving Group is a nearby stellar association of young (12Myr) co-moving stars including the classical debris disk star beta Pictoris. Due to their proximity and youth they are excellent targets when searching for submillimetre emiss
PSO J318.5338$-$22.8603 is an extremely-red planetary-mass object that has been identified as a candidate member of the $beta$ Pictoris moving group based on its spatial position and tangential velocity. We present a high resolution $K$-band spectrum
Context: The $beta$ Pictoris moving group is one of the most well-known young associations in the solar neighbourhood and several members are known to host circumstellar discs, planets, and comets. Measuring its age with precision is basic to study s
Only 20% of old field stars have detectable debris discs, leaving open the question of what disc, if any, is present around the remaining 80%. Young moving groups allow to probe this population, since discs are expected to have been brighter early on
Jeffries & Binks (2014) and Malo et al. (2014) have recently reported Li depletion boundary (LDB) ages for the {beta} Pictoris moving group (BPMG) which are twice as old as the oft-cited kinematic age of $sim$12 Myr. In this study we present (1) a ne