ﻻ يوجد ملخص باللغة العربية
Dynamics in AdS spacetimes is characterized by various time-periodicities. The most obvious of these is the time-periodic evolution of linearized fields, whose normal frequencies form integer-spaced ladders as a direct consequence of the structure of representations of the conformal group. There are also explicitly known time-periodic phenomena on much longer time scales inversely proportional to the coupling in the weakly nonlinear regime. We ask what would correspond to these long time periodicities in a holographic CFT, provided that such a CFT reproducing the AdS bulk dynamics in the large central charge limit has been found. The answer is a very large family of multiparticle operators whose conformal dimensions form simple ladders with spacing inversely proportional to the central charge. We give an explicit demonstration of these ideas in the context of a toy model holography involving a $phi^4$ probe scalar field in AdS, but we expect the applicability of the underlying structure to be much more general.
We use the quantum null energy condition in strongly coupled two-dimensional field theories (QNEC2) as diagnostic tool to study a variety of phase structures, including crossover, second and first order phase transitions. We find a universal QNEC2 co
We present a constructive derivation of holographic four-point correlators of arbitrary half-BPS operators for all maximally supersymmetric conformal field theories in $d>2$. This includes holographic correlators in 3d ${cal N}=8$ ABJM theories, 4d $
Following recent work on heavy-light correlators in higher-dimensional conformal field theories (CFTs) with a large central charge $C_T$, we clarify the properties of stress tensor composite primary operators of minimal twist, $[T^m]$, using argument
We use modular invariance to derive constraints on the spectrum of warped conformal field theories (WCFTs) --- nonrelativistic quantum field theories described by a chiral Virasoro and $U(1)$ Kac-Moody algebra. We focus on holographic WCFTs and inter
We study some aspects of conformal field theories at finite temperature in momentum space. We provide a formula for the Fourier transform of a thermal conformal block and study its analytic properties. In particular we show that the Fourier transform