ﻻ يوجد ملخص باللغة العربية
We report on a coherent timing analysis of the 163 Hz accreting millisecond X-ray pulsar IGR J17062-6143. Using data collected with the Neutron Star Interior Composition Explorer and XMM-Newton, we investigated the pulsar evolution over a timespan of four years. We obtained a unique phase-coherent timing solution for the stellar spin, finding the source to be spinning up at a rate of $(3.77pm0.09)times 10^{-15}$ Hz/s. We further find that the $0.4-6$ keV pulse fraction varies gradually between 0.5% and 2.5% following a sinusoidal oscillation with a $1210pm40$ day period. Finally, we supplemented this analysis with an archival Rossi X-ray Timing Explorer observation, and obtained a phase coherent model for the binary orbit spanning 12 years, yielding an orbital period derivative measurement of $(8.4pm2.0) times 10^{-12}$ s/s. This large orbital period derivative is inconsistent with a binary evolution that is dominated by gravitational wave emission, and is suggestive of highly non-conservative mass transfer in the binary system.
IGR J17062-6143 is an ultra-compact X-ray binary (UCXB) with an orbital period of 37.96 min. It harbours a millisecond X-ray pulsar that is spinning at 163 Hz and and has continuously been accreting from its companion star since 2006. Determining the
IGR J17511-3057 is the second X-ray transient accreting millisecond pulsar discovered by INTEGRAL. It was in outburst for about a month from September 13, 2009. The broad-band average spectrum is well described by thermal Comptonization with an elect
We analyze the spectral and timing properties of IGR J17498-2921 and the characteristics of X-ray bursts to constrain the physical processes responsible for the X-ray production in this class of sources. The broad-band average spectrum is well-descri
We report on the phase-coherent timing analysis of the accreting millisecond X-ray pulsar IGR J17591-2342, using Neutron Star Interior Composition Explorer (NICER) data taken during the outburst of the source between 2018 August 15 and 2018 October 1
We present a timing analysis of the 2009 outburst of the accreting millisecond X-ray pulsar Swift J1756.9-2508, and a re-analysis of the 2007 outburst. The source shows a short recurrence time of only ~2 years between outbursts. Thanks to the approxi