ترغب بنشر مسار تعليمي؟ اضغط هنا

Absorption Lines in the 0.91-1.33 $mu$m Spectra of Red Giants for Measuring Abundances of Mg, Si, Ca, Ti, Cr, and Ni

133   0   0.0 ( 0 )
 نشر من قبل Noriyuki Matsunaga
 تاريخ النشر 2021
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Red giants show a large number of absorption lines in both optical and near-infrared wavelengths. Still, the characteristics of the lines in different wave passbands are not necessarily the same. We searched for lines of Mg I, Si I, Ca I, Ti I, Cr I, and Ni I in the z, Y, and J bands (0.91-1.33 $mu$m), that are useful for precise abundance analyses, from two different compilations of lines, namely, the third release of Vienna Atomic Line Database (VALD3) and the catalog published by Melendez & Barbuy in 1999 (MB99). We selected sufficiently strong lines that are not severely blended and ended up with 191 lines (165 and 141 lines from VALD3 and MB99, respectively), in total, for the six elements. Combining our line lists with high-resolution (R = 28,000) and high signal-to-noise (higher than 500) spectra taken with the WINERED spectrograph, we measured the abundances of the six elements in addition to Fe I of two prototype red giants, i.e., Arcturus and mu Leo. The resultant abundances show reasonable agreements with literature values within $sim$0.2 dex, indicating that the available oscillator strengths are acceptable, although the abundances based on the two line lists show systematic differences by 0.1-0.2 dex. Furthermore, to improve the precision, solid estimation of the microturbulence (or the microturbulences if they are different for different elements) is necessary as far as the classical hydrostatic atmosphere models are used for the analysis.

قيم البحث

اقرأ أيضاً

For a detailed analysis of stellar chemical abundances, high-resolution spectra in the optical have mainly been used, while the development of near-infrared (NIR) spectrograph has opened new wavelength windows. Red giants have a large number of resol ved absorption lines in both the optical and NIR wavelengths, but the characteristics of the lines in different wave passbands are not necessarily the same. We present a selection of FeI lines in the $z^{prime}$, $Y$, and $J$ bands (0.91-1.33 $mu$m). On the basis of two different lists of lines in this range, the Vienna Atomic Line Database (VALD) and the catalog published by Melendez & Barbuy in 1999 (MB99), we selected sufficiently strong lines that are not severely blended and compiled lists with 107 FeI lines in total (97 and 75 lines from VALD and MB99, respectively). Combining our lists with high-resolution ($lambda/Deltalambda = 28,000$) and high signal-to-noise ($>500$) spectra taken with a NIR spectrograph, WINERED, we present measurements of the iron abundances of two prototype red giants: Arcturus and $mu$ Leo. A bootstrap method for determining the microturbulence and abundance together with their errors is demonstrated. The standard deviations of $logepsilon_{rm Fe}$ values from individual FeI lines are significantly smaller when we use the lines from MB99 instead of those from VALD. With the MB99 list, we obtained $xi=1.20pm0.11 {rm km~s^{-1}}$ and $logepsilon_{rm Fe}=7.01pm0.05$ dex for Arcturus, and $xi=1.54pm0.17 {rm km~s^{-1}}$ and $logepsilon_{rm Fe}=7.73pm0.07$ dex for $mu$ Leo. These final values show better agreements with previous values in the literature than the corresponding values we obtained with VALD.
501 - Tao Bo , Peng-Fei Liu , Luo Yan 2020
Combining crystal structure search and first-principles calculations, we report a series of two-dimensional (2D) metal borides including orthorhombic (ort-) MB6 (M=Mg, Ca) and hexagonal (hex-) MB6 (M=Mg, Ca, Sc, Ti, Sr, Y). Then, we investigate their geometrical structures, bonding properties, electronic structures, mechanical properties, phonon dispersions, thermal stability, dynamic stability, electron-phonon coupling (EPC), superconducting properties and so on. Our ab initio molecular dynamics simulation results show that these MB6 can maintain their original configurations up to 700/1000 K, indicating their excellent thermal stability. All their elastic constants satisfy the Born mechanically stable criteria and no visible imaginary frequencies are observed in their phonon dispersions. The EPC results show that these 2D MB6 are all intrinsic phonon-mediated superconductors with the superconducting transition temperature (Tc??) in the range of 2.2-21.3 K. Among them, the highest Tc (21.3 K) appears in hex-CaB6, whose EPC constant () is 0.94. By applying tensile/compressive strains on ort-/hex-CaB6, we find that the compressive strain can obviously soften the acoustic phonon branch and enhance the EPC as well as Tc. The Tc of the hex-CaB6 can be increased from 21.3 K to 28 K under compressive strain of 3%. These findings enrich the database of 2D superconductors and should stimulate experimental synthesizing and characterizing of 2D superconducting metal borides.
We obtained spectra of red giants in 15 Small Magellanic Cloud (SMC) clusters in the region of the CaII lines with FORS2 on the Very Large Telescope (VLT). We determined the mean metallicity and radial velocity with mean errors of 0.05 dex and 2.6 km /s, respectively, from a mean of 6.5 members per cluster. One cluster (B113) was too young for a reliable metallicity determination and was excluded from the sample. We combined the sample studied here with 15 clusters previously studied by us using the same technique, and with 7 clusters whose metallicities determined by other authors are on a scale similar to ours. This compilation of 36 clusters is the largest SMC cluster sample currently available with accurate and homogeneously determined metallicities. We found a high probability that the metallicity distribution is bimodal, with potential peaks at -1.1 and -0.8 dex. Our data show no strong evidence of a metallicity gradient in the SMC clusters, somewhat at odds with recent evidence from CaT spectra of a large sample of field stars Dobbie et al. (2014). This may be revealing possible differences in the chemical history of clusters and field stars. Our clusters show a significant dispersion of metallicities, whatever age is considered, which could be reflecting the lack of a unique AMR in this galaxy. None of the chemical evolution models currently available in the literature satisfactorily represents the global chemical enrichment processes of SMC clusters.
Oxygen and zinc in the Galactic bulge are key elements for the understanding of the bulge chemical evolution. Oxygen-to-iron abundance ratios provide a most robust indicator of the star formation rate and chemical evolution of the bulge. Zinc is enha nced in metal-poor stars, behaving as an $alpha$-element, and its production may require nucleosynthesis in hypernovae. Most of the neutral gas at high redshift is in damped Lyman-alpha systems (DLAs), where Zn is also observed to behave as an alpha-element. The aim of this work is the derivation of the alpha-element oxygen, together with nitrogen, and the iron-peak element zinc abundances in 417 bulge giants, from moderate resolution (R~22,000) FLAMES-GIRAFFE spectra. For stars in common with a set of UVES spectra with higher resolution (R~45,000), the data are intercompared. The results are compared with literature data and chemodynamical models.
The Milky Way bulge is an important tracer of the early formation and chemical enrichment of the Galaxy. The abundances of different iron-peak elements in field bulge stars can give information on the nucleosynthesis processes that took place in the earliest supernovae. Cobalt (Z=27) and copper (Z=29) are particularly interesting.We aim to identify the nucleosynthesis processes responsible for the formation of the iron-peak elements Co and Cu. Methods. We derived abundances of the iron-peak elements cobalt and copper in 56 bulge giants, 13 of which were red clump stars. High-resolution spectra were obtained using FLAMES-UVES at the ESO Very Large Telescope by our group in 2000-2002, which appears to be the highest quality sample of high-resolution data on bulge red giants obtained in the literature to date. Over the years we have derived the abundances of C, N, O, Na, Al, Mg; the iron-group elements Mn and Zn; and neutron-capture elements. In the present work we derive abundances of the iron-peak elements cobalt and copper. We also compute chemodynamical evolution models to interpret the observed behaviour of these elements as a function of iron. The sample stars show mean values of [Co/Fe]~0.0 at all metallicities, and [Cu/Fe]~0.0 for [Fe/H]>-0.8 and decreasing towards lower metallicities with a behaviour of a secondary element. We conclude that [Co/Fe] varies in lockstep with [Fe/H], which indicates that it should be produced in the alpha-rich freezeout mechanism in massive stars. Instead [Cu/Fe] follows the behaviour of a secondary element towards lower metallicities, indicating its production in the weak s-process nucleosynthesis in He-burning and later stages. The chemodynamical models presented here confirm the behaviour of these two elements (i.e. [Co/Fe] vs. [Fe/H]~constant and [Cu/Fe] decreasing with decreasing metallicities).
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا