ترغب بنشر مسار تعليمي؟ اضغط هنا

In-line optical subtraction using a differential Faraday rotation spectrometer for 15NO/14NO isotopic analysis

108   0   0.0 ( 0 )
 نشر من قبل Eric Zhang
 تاريخ النشر 2021
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We present a dual-modulation Faraday rotation spectrometer with in-line optical subtraction for differential measurement of nitric oxide (NO) isotopologues. In-situ sample referencing is accomplished via differential dual-cell measurements, with 3.1 ppbv/rt(Hz) (15NO) sensitivity through 15 cm optical path length. Our system operates at 1.9x the shot-noise limit, with a minimum fractional absorption of 1.8e-7/rt(Hz). Differential measurement of both 14NO and 15NO are shown, yielding ~20 dB magneto-optical suppression. Noise analysis demonstrates stability of the differential signal up to ~500 s, with normalized ratiometric precision of 3.0 permil/rt(Hz) using 1 ppmv 15NO (or 272 ppmv 14NO at natural abundance). We rigorously model our differential method and demonstrate the utility of in-line calibration for precise isotopic ratiometry.

قيم البحث

اقرأ أيضاً

We demonstrate optical frequency comb Faraday rotation spectroscopy (OFC-FRS) for broadband interference-free detection of paramagnetic species. The system is based on a femtosecond doubly resonant optical parametric oscillator and a fast-scanning Fo urier transform spectrometer (FTS). The sample is placed in a DC magnetic field parallel to the light propagation. Efficient background suppression is implemented via switching the direction of the field on consecutive FTS scans and subtracting the consecutive spectra, which enables long term averaging. In this first demonstration, we measure the entire Q- and R-branches of the fundamental band of nitric oxide in the 5.2-5.4 {mu}m range and achieve good agreement with a theoretical model.
We demonstrate a method to reduce number fluctuations in an ultracold atomic sample using real-time feedback. By measuring the Faraday rotation of an off-resonant probe laser beam with a pair of avalanche photodetectors in a polarimetric setup we pro duce a proxy for the number of atoms in the sample. We iteratively remove a fraction of the excess atoms from the sample to converge on a target proxy value in a way that is insensitive to environmental perturbations and robust to errors in light polarization. Using absorption imaging for out-of-loop verification, we demonstrate a reduction in the number fluctuations from $3%$ to $0.45%$ for samples at a temperature of 16.4 $mu$K over the time-scale of several hours which is limited by temperature fluctuations, beam pointing noise, and photon shot noise.
Recent advances in optical metasurfaces enable control of the wavefront, polarization and dispersion of optical waves beyond the capabilities of conventional diffractive optics. An optical design space that is poised to highly benefit from these deve lopments is the folded optics architecture where light is confined between reflective surfaces and the wavefront is controlled at the reflective interfaces. In this manuscript we introduce the concept of folded metasurface optics by demonstrating a compact high resolution optical spectrometer made from a 1-mm-thick glass slab with a volume of 7 cubic millimeters. The spectrometer has a resolution of 1.2 nm, resolving more than 80 spectral points in a 100-nm bandwidth centered around 810 nm. The device is composed of three different reflective dielectric metasurfaces, all fabricated in a single lithographic step on one side of a transparent optical substrate, which simultaneously acts as the propagation space for light. An image sensor, parallel to the spectrometer substrate, can be directly integrated on top of it to achieve a compact mono- lithic device including all the active and passive components. Multiple spectrometers, with similar or different characteristics and operation bandwidths may also be integrated on the same chip and fabricated in a batch process, significantly reducing their costs and increas- ing their functionalities and integration potential. In addition, the folded metasystems design can be applied to many optical systems, such as optical signal processors, interferometers, hyperspectral imagers and computational optical systems, significantly reducing their sizes and increasing their mechanical robustness and potential for integration.
We demonstrate a thermal infrared (IR) detector based on an ultra-high-quality-factor (Q) whispering-gallery-mode (WGM) microtoroidal silica resonator, and investigate its performance to detect IR radiation at 10 micron wavelength. The bandwidth and the sensitivity of the detector are dependent on the power of a probe laser and the detuning between the probe laser and the resonance frequency of the resonator. The microtoroid IR sensor achieved a noise-equivalent-power (NEP) of 7.46 nW, corresponding to IR intensity of 0.095 mW/cm^2
Faraday rotation in a magnetoactive medium with time dependent dielectric permittivity tensor is analyzed through both its diagonal and non-diagonal elements. Continuous and pulse incident laser field cases are considered. In a continuous case linear increasing of Faraday rotation angle with time is obtained.In the continuous laser field case Faraday angle of rotation in both time dependent diagonal and non-diagonal element cases shows an increase with periodic oscillations as either positive (time-dependent dielectric permittivity case) or negative (time dependent gyration vector case) and follows a general pattern. Ultrashort pulse can scan the time dependent dielectric permittivity through the Faraday rotation angle.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا