ﻻ يوجد ملخص باللغة العربية
A magnetic monopole in spin ice is a novel quasiparticle excitation in condensed matter physics, and we found that the ac frequency dependent magnetic susceptibility $chi(omega)$ in the two-dimensional (2D) spin ice (so-called kagom{e} ice) of Dy$_2$Ti$_2$O$_7$ shows a single scaling form. This behavior can be understood in terms of the dynamical scaling law for 2D Coulomb gas (CG) systems [Phys. Rev. B 90, 144428 (2014)], characterized by the charge correlation length $xi (propto1/sqrt{omega_1})$, where $omega_{1}$ is a characteristic frequency proportional to the peak position of the imaginary part of $chi(omega)$. It is a generic behavior among a wide variety of models such as the vortex dynamics of 2D superconductors, 2D superfluids, classical XY magnets, and dynamics of melting of Wigner crystals.
While sources of magnetic fields - magnetic monopoles - have so far proven elusive as elementary particles, several scenarios have been proposed recently in condensed matter physics of emergent quasiparticles resembling monopoles. A particularly simp
One of the most remarkable examples of emergent quasi-particles, is that of the fractionalization of magnetic dipoles in the low energy configurations of materials known as spin ice, into free and unconfined magnetic monopoles interacting via Coulomb
Artificial spin ice offers the possibility to investigate a variety of dipolar orderings, spin frustrations and ground states. However, the most fascinating aspect is the realization that magnetic charge order can be established without spin order. W
The Nd-langasite compound contains planes of magnetic Nd3+ ions on a lattice topologically equivalent to a kagom{e} net. The magnetic susceptibility does not reveal any signature of long-range ordering down to 2 K but rather a correlated paramagnetis
We determine the thermodynamic properties and the spectral function for a homogeneous two-dimensional Fermi gas in the normal state using the Luttinger-Ward, or self-consistent T-matrix, approach. The density equation of state deviates strongly from