ﻻ يوجد ملخص باللغة العربية
Based on the quantum master equation approach, the nonlinear electric conductivity of graphene is investigated under static electric fields for various chemical potential shifts. The simulation results show that, as the field strength increases, the effective conductivity is firstly suppressed, reflecting the depletion of effective carriers due to the large displacement in the Brillouin zone caused by the strong field. Then, as the field strength exceeds $1$~MV/m, the effective conductivity increases, overcoming the carrier depletion via the Landau--Zener tunneling process. Based on the nonlinear behavior of the conductivity, the charge transport induced by few-cycle THz pulses is further studied to elucidate the ultrafast optical control of electric current in matter.
The nonlinear optical and optoelectronic properties of graphene with the emphasis on the processes of harmonic generation, frequency mixing, photon drag and photogalvanic effects as well as generation of photocurrents due to coherent interference eff
The temperature dependence of electric transport properties of single-layer and few-layer graphene at large charge doping is of great interest both for the study of the scattering processes dominating the conductivity at different temperatures and in
A Drude-Boltzmann theory is used to calculate the transport properties of bilayer graphene. We find that for typical carrier densities accessible in graphene experiments, the dominant scattering mechanism is overscreened Coulomb impurities that behav
We propose optical longitudinal conductivity as a realistic observable to detect light-induced Floquet band gaps in graphene. These gaps manifest as resonant features in the conductivity, when resolved with respect to the probing frequency and the dr
We employ a quantum Liouville equation with relaxation to model the recently observed anomalous Hall effect in graphene irradiated by an ultrafast pulse of circularly polarized light. In the weak-field regime, we demonstrate that the Hall effect orig