ﻻ يوجد ملخص باللغة العربية
Proposals are made to describe 1D, N = 4 supersymmetrical systems that extend SYK models by compactifying from 4D, N = 1 supersymmetric Lagrangians involving chiral, vector, and tensor supermultiplets. Quartic fermionic vertices are generated via integrals over the whole superspace, while 2(q-1)-point fermionic vertices are generated via superpotentials. The coupling constants in the superfield Lagrangians are arbitrary, and can be chosen to be Gaussian random. In that case, these 1D, N = 4 supersymmetric SYK models would exhibit Wishart-Laguerre randomness, which share the same feature among other 1D supersymmetric SYK models in literature. One difference with 1D, N = 1 and N = 2 models though, is our models contain dynamical bosons, but this is consistent with other 1D, N = 4 and 2D, N = 2 models in literature. Added conjectures on duality and possible mirror symmetry realizations on these models is noted.
We analyse the geometry of four-dimensional bosonic manifolds arising within the context of $N=4, D=1$ supersymmetry. We demonstrate that both cases of general hyper-Kahler manifolds, i.e. those with translation or rotational isometries, may be super
We present a systematic procedure to extract the dynamics of the low energy soft mode in SYK type models with a single energy scale $J$ and emergent reparametrization symmetry in the IR. This is given in the framework of the perturbation theory schem
We consider the propagation of Type I open superstrings on orbifolds with four non-compact dimensions and $N=1$ supersymmetry. In this paper, we concentrate on a non-trivial Z_2xZ_2 example. We show that consistency conditions, arising from tadpole c
We find a family of complex saddle-points at large N of the matrix model for the superconformal index of SU(N) N=4 super Yang-Mills theory on $S^3 times S^1$ with one chemical potential $tau$. The saddle-point configurations are labelled by points $(
For all types of N=4 anti-de Sitter (AdS) supersymmetry in three dimensions, we construct manifestly supersymmetric actions for Abelian vector multiplets and explain how to extend the construction to the non-Abelian case. Manifestly N=4 supersymmetri