ﻻ يوجد ملخص باللغة العربية
We consider the twistor space ${cal P}^6cong{mathbb R}^4{times}{mathbb C}P^1$ of ${mathbb R}^4$ with a non-integrable almost complex structure ${cal J}$ such that the canonical bundle of the almost complex manifold $({cal P}^6, {cal J})$ is trivial. It is shown that ${cal J}$-holomorphic Chern-Simons theory on a real $(6|2)$-dimensional graded extension ${cal P}^{6|2}$ of the twistor space ${cal P}^6$ is equivalent to self-dual Yang-Mills theory on Euclidean space ${mathbb R}^4$ with Lorentz invariant action. It is also shown that adding a local term to a Chern-Simons-type action on ${cal P}^{6|2}$, one can extend it to a twistor action describing full Yang-Mills theory.
There is evidence that one can compute tree level super Yang-Mills amplitudes using either connected or completely disconnected curves in twistor space. We argue that the two computations are equivalent, if the integration contours are chosen in a sp
We explain some details of the construction of composite operators in N=4 SYM that we have elaborated earlier in the context of Lorentz harmonic chiral (LHC) superspace. We give a step-by-step elementary derivation and show that the result coincides
We study the spectrum of anomalous dimensions of operators dual to giant graviton branes. The operators considered belong to the su$(2|3)$ sector of ${cal N}=4$ super Yang-Mills theory, have a bare dimension $sim N$ and are a linear combination of re
We discuss bosonic and supersymmetric Yang-Mills matrix models with compact semi-simple gauge group. We begin by finding convergence conditions for the partition and correlation functions. Moving on, we specialise to the SU(N) models with large N. In
We consider Yang--Mills theory with a compact structure group $G$ on four-dimensional de Sitter space dS$_4$. Using conformal invariance, we transform the theory from dS$_4$ to the finite cylinder ${cal I}times S^3$, where ${cal I}=(-pi/2, pi/2)$ and