ﻻ يوجد ملخص باللغة العربية
Optical spectroscopy in the gas phase is a key tool to elucidate the structure of atoms and molecules and of their interaction with external fields. The line resolution is usually limited by a combination of first-order Doppler broadening due to particle thermal motion and of a short transit time through the excitation beam. For trapped particles, suitable laser cooling techniques can lead to strong confinement (Lamb-Dicke regime, LDR) and thus to optical spectroscopy free of these effects. For non-laser coolable spectroscopy ions, this has so far only been achieved when trapping one or two atomic ions, together with a single laser-coolable atomic ion [1,2]. Here we show that one-photon optical spectroscopy free of Doppler and transit broadening can also be obtained with more easily prepared ensembles of ions, if performed with mid-infrared radiation. We demonstrate the method on molecular ions. We trap approximately 100 molecular hydrogen ions (HD$^{+}$) within a Coulomb cluster of a few thousand laser-cooled atomic ions and perform laser spectroscopy of the fundamental vibrational transition. Transition frequencies were determined with lowest uncertainty of 3.3$times$10$^{-12}$ fractionally. As an application, we determine the proton-electron mass ratio by matching a precise ab initio calculation with the measured vibrational frequency.
Molecules with deep vibrational potential wells provide optical intervals sensitive to variation in the proton-electron mass ratio ($mu$). On one hand, polar molecules are of interest since optical state preparation techniques have been demonstrated
Molecular transitions recently discovered at redshift z_abs=2.059 toward the bright background quasar J2123-0050 are analysed to limit cosmological variation in the proton-to-electron mass ratio, mu=m_p/m_e. Observed with the Keck telescope, the opti
We present a new derivation of the proton-electron mass ratio from the hydrogen molecular ion, HD$^+$. The derivation entails the adjustment of the mass ratio in highly precise theory so as to reproduce accurately measured ro-vibrational frequencies.
UV frequency metrology has been performed on the a3Pi - X1Sigma+ (0,0) band of various isotopologues of CO using a frequency-quadrupled injection-seeded narrow-band pulsed Titanium:Sapphire laser referenced to a frequency comb laser. The band origin
Great advances in precision quantum measurement have been achieved with trapped ions and atomic gases at the lowest possible temperatures. These successes have inspired ideas to merge the two systems. In this way one can study the unique properties o